
CASL Script Language Guide
for Windows 95 and Windows NT

8230 Montgomery Road • Cincinnati, OH 45236
Sales Information (513) 745-0500 • Fax (513) 745-0327

INFOConnect
CASL Script Language Guide

Version 2.0

© 1997 Attachmate Corporation. All rights reserved. Printed in the United States of America.

Attachmate Corporation has prepared this document for use by Attachmate personnel, licensees, and customers. The information
contained herein is the property of Attachmate and shall not be copied, photocopied, translated, or reduced to any electronic or
machine readable form, either in whole or in part, without prior written approval from Attachmate.

Attachmate reserves the right to, without notice, modify or revise all or part of this document and/or change product features or
specifications and shall not be responsible for any loss, cost, or damage, including consequential damage, caused by reliance on these
materials.

Attachmate, EXTRA!, and INTERCOM are registered trademarks and CASL, PEP, and QuickPad are trademarks of Attachmate
Corporation. VT is a trademark of Digital Equipment Corporation. Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation. INFOConnect is a trademark and MAPPER and Unisys are registered trademarks of Unisys Corporation.
WordStar is a registered trademark of WordStar International Inc.

All other trademarks and registered trademarks are property of their respective owners.

Contents
iii

About This Guide xv

Audience .xvi
Documentation Conventions . xvii
Abbreviations. xx
Related Documentation. .xxi

Chapter 1 Introducing CASL 1

About CASL. 2
Why Use Macros? . 3
Creating and Editing CASL Macros. 4

Creating a CASL Macro . 4
Types of Macros . 6
The Structure of Macros . 7

Comments. 7
Declarations . 7
Directives . 8

The Elements of a Macro . 9
Statements . 9
Variables . 9
Constants . 9
Expressions . 9
Labels . 9
Procedures and Functions . 9
Keywords . 10

Contents

Chapter 1 Introducing CASL, continued

Designing a Macro .11
Sample: A Basic Logon Macro. .12

Describing the Purpose of the Macro 12
Documenting the Macro's History .13
Displaying a Message .13
Using String Constants .13
Establishing Communications with MCI Mail.14
Waiting for a Prompt from the Host14
iv

Sending the Logon Sequence .14
Using CASL Predeclared Variables.14
Using Keywords .15
Ending the Macro .15
Using Comments and Blank Lines 15

Sample: Verifying the Host Connection16
Declaring Variables .17
Initializing Variables. .18
Performing a Task While a Condition is True 18
Using a Relational Expression to Control the Process18
Waiting for a Character String .18
Checking if a Timeout Occurred .19
Testing the Outcome with a Boolean Expression19
Branching to a Different Macro Location19
Continuing the Logon if the Connection Is Established. . . .20
Incrementing a Counter Using an Arithmetic Expression . .20
Alerting the User if the Connection Failed.20
Disconnecting the Session .21
Using Indentation .21
Using Braces with a Statement Group 22

Sample: Controlling the Entire Logon Process 23
Performing a Task while Multiple Conditions Are True25
Watching for One of Several Host Responses25
Sounding an Alarm .27
Using the Line-Continuation Sequence.27

Compiling a CASL Macro. .29
Running a CASL Macro .30

Contents

Chapter 2 Understanding the Basics of CASL 31

Statements . 32
Line Continuation Characters . 32

Comments . 33
Block Comments. 33
Line Comments. 33

Identifiers . 35
Data Types . 36
Constants . 37
v

Integer Constants . 37
Real Constants . 38
String Constants . 39
Boolean Constants . 43

Expressions. 44
Order of Evaluation . 45

Arithmetic Expressions . 46
String Expressions . 50

String Concatenation Operation . 50
Relational Expressions . 51
Boolean Expressions. 53
Type Conversion . 54

Converting an Integer to a String . 54
Converting a String to an Integer . 54
Converting an Integer to a Hexadecimal String 54
Converting an ASCII Value to a Character String. 55

Compiler Directives . 56
Suppressing Label Information . 56
Suppressing Line Number Information 56
Trapping an Error . 56
Including an External File . 57
Defining a Macro Description . 57

Reserved Keywords . 58

Chapter 3 Variables, Arrays, Procedures, and Functions 63

Variables . 64
Predefined Variables. 64
User-Defined Variables. 64

Explicit Variable Declarations . 65
Single-Variable Declarations. 65
Multiple-Variable Declarations . 65
Initializers . 66
Public and External Variables . 66

Contents

Chapter 3 Variables, Arrays, Procedures, and Functions, continued

Implicit Variable Declarations. .67
Arrays. .68

Single-Dimensional Arrays .68
Multidimensional Arrays .68
Arrays with Alternative Bounds .69

Procedures. .70
Procedure Argument Lists .70
Forward Declarations for Procedures71
vi

External Procedures .72
Functions .73

Function Argument Lists .73
Forward Declarations for Functions.74
External Functions. .74

Scope Rules. .75
Local Variables .75
Global Variables .75
Default Variable Initialization Values75
Labels .76

Calling DLL Functions .77
Declaring DLL Functions .77
Parameter and Return Values. .78
Non-Supported Parameters and Return Values80
Writing Windows DLLs .80

Chapter 4 Interacting with the Host, Users, and Other Macros 83

Interacting with the Host .84
Waiting for a Character String .84
Watching for Conditions to Occur .85
Setting and Testing Time Limits .86
Sending a Reply to the Host .86

Communicating with a User .87
Displaying Information .87
Requesting Information .88

Invoking Other Macros. .90
Chaining to Another Macro .90
Calling Another Macro .90
Passing Arguments .90

Exchanging Variables .91

Contents

Chapter 4 Interacting with the Host, Users, and Other Macros, continued

Trapping and Handling Errors . 92
Enabling Error Trapping . 92
Testing if an Error Occurred . 92
Checking the Type of Error . 92
Checking the Error Number . 92

Chapter 5 Functional Purpose of CASL Elements 95
vii

Overview . 96
Date and Time Operations . 97
Error Control . 98
File Input/Output Operations . 99
Host Interaction . 101
Macro Management . 102
Mathematical Operations . 103
Printer Control . 104
Program Flow Control . 105
Session Management . 107
String Operations . 109
Type Conversion Operations. 111
Window Control . 112
Miscellaneous Elements . 114

Chapter 6 CASL Language 115

How CASL Elements Are Documented. 116
abs (function). 117
activate (statement) . 118
activatesession (statement). 119
alarm (statement) . 120
alert (statement) . 122
arg (function) . 124
asc (function) . 125
assume (statement). 126
backups (module variable) . 127
binary (function). 128
bitstrip (function) . 129
busycursor (statement) . 130
bye (statement) . 131
capture (statement) . 132
case...endcase (statments) . 134
chain (statement). 136

Contents

Chapter 6 CASL Language, continued

chdir (statement) .137
choice (system variable) .138
chr (function) .139
cksum (function). .140
class (function). .141
clear (statement) .142
close (statement) .143
cls (statement) .144
viii

compile (statement) .145
connected (function) .146
copy (statement) .147
count (function) .148
crc (function) .149
curday (function) .150
curdir (function) .151
curdrive (function) .152
curhour (function). .153
curminute (function) .154
curmonth (function) .155
cursecond (function) .156
curyear (function) .157
date (function) .158
definput (system variable) .159
defoutput (system variable) .160
dehex (function) .161
delete (statement) .162
delete (function) .163
description (system variable) .164
destore (function) .165
detext (function) .166
device (system variable) .167
dialogbox...enddialog (statements) .168
display (system variable) .175
do (statement) .176
drive (statement) .177
end (statement) .178
enhex (function) .179
enstore (function) .180
entext (function) .181
environ (function) .182
eof (function) .183
eol (function) .184
errclass (system variable) .186

Contents

Chapter 6 CASL Language, continued

errno (system variable) . 187
error (function) . 188
exists (function) . 189
exit (statement) . 190
false (constant) . 191
filefind (function) . 192
filesize (function) . 194
fncheck (function) . 195
ix

fnstrip (function). 196
footer (system variable) . 198
for...next (statements) . 199
freemem (function) . 201
freetrack (function) . 202
func...endfunc (function declaration) . 203
genlabels (compiler directive) . 205
genlines (compiler directive) . 206
get (statement) . 207
go (statement) . 208
gosub...return (statements) . 209
goto (statement) . 210
grab (statement) . 211
halt (statement) . 212
header (system variable) . 213
hex (function). 214
hide (statement) . 215
hideallquickpads (statement). 216
hidequickpad (statement) . 217
hms (function) . 218
homedir (system variable) . 219
if...then...else (statements) . 220
include (compiler directive) . 222
inject (function) . 223
inkey (function) . 224
input (statement) . 226
inscript (function) . 227
insert (function) . 228
instr (function) . 229
intval (function) . 230
jump (statement) . 231
keys (system variable). 232
label (statement) . 233
left (function) . 234
length (function). 235

Contents

Chapter 6 CASL Language, continued

loadquickpad (statement). .236
loc (function) .237
lowcase (function) .238
lprint (statement) .239
match (system variable). .240
max (function) .241
maximize (statement). .242
mid (function) .243
x

min (function) .244
minimize (statement) .245
mkdir (statement) .246
mkint (function) .247
mkstr (function) .248
move (statement) .249
name (function) .250
netid (system variable). .251
new (statement) .252
nextchar (function) .253
nextline (statement) .254
nextline (function). .256
null (function) .258
octal (function) .259
off (constant) .260
on (constant) .261
online (function) .262
ontime (function) .263
open (statement) .264
pack (function) .265
pad (function) .266
passchar (system variable) .268
password (system variable) .269
perform (statement) .270
pop (statement) .271
press (statement) .272
print (statement). .274
printer (system variable) .275
proc...endproc (procedure declaration)276
protocol (system variable) .279
put (statement). .280
quit (statement) .281
quote (function) .282
read (statement). .283
read line (statement) .284

Contents

Chapter 6 CASL Language, continued

receive (statement) . 285
rename (statement) . 286
repeat...until (statements) . 287
reply (statement) . 288
request (statement) . 289
restore (statement) . 290
return (statement) . 291
right (function) . 292
xi

rmdir (statement) . 293
run (statement) . 294
save (statement) . 295
script (system variable) . 296
scriptdesc (compiler directive) . 297
secno (function). 298
seek (statement) . 299
send (statement) . 300
sendbreak (statement) . 301
session (function) . 302
sessname (function) . 303
sessno (function) . 304
show (statement) . 305
showquickpad (statement) . 306
size (statement) . 307
slice (function) . 308
startup (system variable) . 309
str (function) . 310
strip (function) . 311
stroke (function). 312
subst (function) . 313
systime (function) . 314
tabwidth (module variable) . 315
terminal (system variable) . 316
terminate (statement) . 317
time (function) . 318
timeout (system variable) . 319
trace (statement) . 320
track (statement) . 321
track (function). 324
trap (compiler directive) . 326
true (constant) . 327
unloadallquickpads (statement). 328
unloadquickpad (statement) . 329
upcase (function) . 330

Contents

Chapter 6 CASL Language, continued

userid (system variable). .331
val (function) .332
version (function) .333
wait (statement) .334
watch...endwatch (statements) .338
weekday (function). .341
while...wend (statements) .342
winchar (function). .343
xii

winsizex (function) .344
winsizey (function) .345
winstring (function). .346
winversion (function) .347
write (statement) .348
write line (statement) .349
xpos (function) .350
ypos (function) .351
zoom (statement) .352

Chapter 7 Connection, Terminal, and File Transfer Tools 353

The Tool Concept .354
Connection Tools .355
Terminal Tools .356
File Transfer Tools .357
Using Tool Variables .358
Connection Tool Variables. .359
InterCom Variables .360
PEP Variables .364

Appendix A Error Messages 369

Classes of Error Message .370
Internal Errors .371
Compiler Errors .372
Input/Output Errors .380
Mathematical and Range Errors .383
State Errors .384
Critical Errors .385
Macro Execution Errors .386
Compatibility Errors .389
Upload/Download Errors .390
Missing Information Errors .391

Contents

Appendix A Error Messages, continued

Multiple Document Interface Errors . 392
Emulator or File Transfer Protocol Errors 393
DLL Errors . 394
Generic Module Errors . 395
File Transfer Errors . 396
Navigation Errors. 398
xiii

Index 399

About This Guide
xv

The INFOConnect CASL Script Language Guide is designed to
assist you in creating and implementing macros that enhance
communication between your PC and host. It introduces CASL™,
the Common Accessory Script Language. This guide explains how
to use CASL with Accessory Manager.

This preface contains the following sections:

Audience . xvi

Documentation Conventions . xvii

Abbreviations . xx

Related Documentation . xxi

About This Guide

Audience

This guide is written for Accessory Manager users who want to
write CASL macros. It begins with conceptual information so that
the inexperienced programmer can learn the hows and whys of
writing macros. The guide provides reference material on
implementing each macro element. This reference material also
includes details for the sophisticated application developer.
xvi Audience

If you are new to writing macros, you may benefit from first
reading Chapter 1, “Introducing CASL.”

Before reading this guide, you should understand general concepts
for Accessory Manager.

About This Guide

Documentation Conventions

The following documentation conventions are used in this guide:

■ All text that you type on a screen or messages and prompts that
appear on the screen are displayed in this type style .

This type style also is used for CASL macro text.

■ Square brackets ([]) indicate that the argument is optional.
Documentation Conventions xvii

The following example illustrates the notational use of square
brackets:

alarm [integer]

In this example, the argument integer is optional.

■ Words or characters in braces ({ }) represent multiple
arguments from which to choose. The choices are separated by
a vertical line, as shown in the following example:

genlines {on | off}

In this example, there are two choices: on and off . These are
the only possible choices.

■ An ellipsis (...) can have one of several meanings.

❏ If the ellipses occurs at the end of a line, it indicates that the
line is continued on the following line, or that the code
continues but no additional data is shown, as in these
examples:

[edittext x, y, w, h, init_text, ...
str_result_var [, options]]

if arg(1) = "barkley" then ...

❏ If the ellipses occurs on a line of its own, it indicates that
intervening lines of code have been omitted, as in the
following example:

done = false
while not done
 ...
 ...
wend

About This Guide

❏ If the ellipses follows an item in italics, you can repeat the
previous item one or more times, as in the following example:

digit ...

In this example, you can have just one digit , or you may
have multiple digits. You must have at least one digit.

❏ If the ellipses follows an item in square brackets, you can
repeat the item zero or more times, as in the following
example:
xviii Documentation Conventions

[, var] ...

In this example, var is optional. If you choose to use var as
an argument, the ellipsis indicates that you can have
multiple variables as arguments.

■ Italic type is used in the following situations:

❏ To show emphasis, as in, “Do not use the Copy command.”

❏ To show that a word is a placeholder that stands for
something else, as in the following example:

delete filename

In this case, you enter the actual file name rather than the
word filename.

The following are some common placeholders:

char (Integer)—The integer ASCII value of a character

expression (Any)—More than one type of expression can
be used here. Read the text to determine which is suitable.

filename (String)—A legal file specification. You can use
full path names, as well as wild card characters (where
appropriate.

filenum (Integer)—A file number. Range 1–8. These
expressions are usually optional and must be preceded by a
pound sign (#) if they are specified.

time_expr (Integer)—An amount of time. You can use any
numeric expression followed by ticks, seconds, minutes, or
hours. If you do not specify a keyword, seconds is assumed.

■ The word PC refers to any personal computer running
Windows® 95 or Windows NT®.

About This Guide

■ The word host refers to any mainframe, mini-computer, or
information hub with which the PC communicates.

■ File names are shown in all capital letters, as in
INSTALL.EXE, unless a file name is part of a command. In this
situation, lowercase letters are used to show that you do not
have to enter the file name in all capitals.
Documentation Conventions xix

About This Guide

Abbreviations

The following abbreviations are used in this guide.

Abbreviation Meaning

API Application Programming Interface

ASCII American Standard Code for Information Interchange
xx Abbreviations

BBS Bulletin Board System

BPS Bits per second

CASL Common Accessory Script Language

CR Carriage return

CRC Cyclical redundancy check

CR/LF Carriage-return/line-feed

DTE Data Terminal Equipment

FCC Federal Communications Commission

KB Kilobyte

About This Guide

Related Documentation

For information on Accessory Manager and the CASL Macro
Editor, refer to the online Help for Accessory Manager.

For information on Windows 95 or Windows NT, refer to the
documentation provided by Microsoft®.
Related Documentation xxi

Introducing CASL 1
1

In This Chapter This chapter contains the following headings:

About CASL . 2

Why Use Macros? . 3

Creating and Editing CASL Macros . 4

Types of Macros . 6

The Structure of Macros . 7

The Elements of a Macro . 9

Designing a Macro . 11

Sample: A Basic Logon Macro . 12

Sample: Verifying the Host Connection . 16

Sample: Controlling the Entire Logon Process 23

Compiling a CASL Macro . 29

Running a CASL Macro . 30

Chapter 1 Introducing CASL

About CASL

CASL is a scripting language that you can use to create macros
that can interact with hosts, users, and other macros. The macros
you develop can be simple or complex. For instance, you can create
a simple macro that waits for a prompt from the host and then
replies with a user ID and password. More complex macros can
automate entire communications sessions or create custom dialog
boxes that enable users to operate a host application without
2 About CASL

learning its commands.

While CASL is designed to simplify the process of communicating
with other computers, it is not limited to that function. CASL is a
full-featured programming language that can handle almost any
task, including complex mathematical computations and the
display of sophisticated dialog boxes.

CASL macros work with any emulator that runs within Accessory
Manager. Any limitations that are specific to a particular
emulator (such as ALC or EXTRA!® Office for Accessory Manager)
are noted throughout this guide or the Readme file for the product.

Chapter 1 Introducing CASL

Why Use Macros?

When you work in a data communication environment, you often
have to perform the same functions over and over again to
complete your daily activities. For instance, each time you open a
session with a host, you have to type your logon ID and password.

You can eliminate the manual repetition of routine tasks by using
macros to communicate with the host. You have to create and save
Why Use Macros? 3

a macro to be able to use it, but once you have done this, you will
find it invaluable in saving time and effort in the future.

Using macros, you can do any of the following:

■ Perform keystroke sequences

■ Run another PC application

■ Perform almost any function that can be performed using
Accessory Manager, such as loading a QuickPad

■ Create dialog boxes so that you can request user input

In addition, creating and implementing CASL macros are not
difficult tasks. Traditionally, developing applications and utilities
that run in a communications environment required a complex
programming language and an Application Programming
Interface (API) to access the host. You also had to understand the
underlying data communications link. CASL removes these
obstacles. When you write a CASL macro, you do not have to
concern yourself with the details of communication programming;
CASL handles the communication interface.

Chapter 1 Introducing CASL

Creating and Editing CASL Macros

Creating a
CASL Macro

You can create a CASL macro in two ways:

■ Learn Mode—you perform the actions that you want to include
in the macro, and Accessory Manager records those actions in a
CASL macro file, which you can then edit if needed.

■ CASL Macro Editor—you open the CASL Macro Editor and
4 Creating and Editing CASL Macros

write the macro using the CASL script language.

Using Learn Mode To create a CASL macro using Learn Mode, follow these steps:

1 With a session open, click Learn CASL Macro from the Tools
menu.

The CASL Macro Editor starts in a minimized state.

2 Perform the tasks that you want to include in the macro.

3 When you have finished, click Stop CASL Learn from the Tools
menu.

4 When you are prompted about saving the CASL macro, do one of
the following:

If you need to edit the CASL macro, you can do so using the CASL
Macro Editor. Refer to the online Help for Accessory Manager for
detailed information.

To do this Do this

Save the
CASL macro

Click Yes, type a name for the macro in the File Name text box
(you do not have to include a file extension), and click Save on
the Save As dialog box.

The CASL Macro Editor closes automatically.

Not save the
CASL macro

Click No.

The CASL Macro Editor closes automatically.

Chapter 1 Introducing CASL

Using the CASL
Macro Editor

To create a CASL macro using the CASL Macro Editor, follow
these steps:

1 With a session open, click CASL Macro from the Tools menu.

2 Click New.

The CASL Macro Editor starts, displaying a window similar to the
one shown below:
Creating and Editing CASL Macros 5

For information about using this editor, refer to the online Help.

Chapter 1 Introducing CASL

Types of Macros

There are two main types of CASL macros:

■ Online

■ Offline

Online macros work while Accessory Manager is connected to a
host. Usually, these interact with the host to automate all or part
6 Types of Macros

of a communications session. You can use online macros to log on
to the host, or create a custom dialog box for interacting with a
host application.

Offline macros do not interact with a host. For example, you can
use an offline macro to display a list of hosts to which a user might
want to log on.

Note: A session must be open for you to run either an online or
an offline macro.

Chapter 1 Introducing CASL

The Structure of Macros

CASL is flexible enough to accommodate most writing styles. If
you have written computer programs before, you should be able to
retain the same style you have used in the past.

In general, the contents of a macro include such items as
comments, declarations, and directives. A comment documents a
macro; a declaration defines a variable, an array, a procedure, or
The Structure of Macros 7

function; and a directive specifies an action to be taken.

Comments Use comments to explain what will happen when a segment of
code is executed or to block out part of a macro that you do not
want to execute. Comments are ignored by the macro compiler and
do not take up any memory after a macro is compiled. So you can
include many comments to document the flow of a macro.

Starting your macro with a comment header is good practice. This
header should include your name, the creation date, and some
explanation of its objective. An example of this type of comment is
as follows:

-- Macro name: LOGON.XWS
-- Date: 6/24/92
-- Author: John Doe

In this example, the double hyphen is used to indicate a comment.
Chapter 2, “Understanding the Basics of CASL,” describes other
notations you can use to designate a comment.

Declarations Set up your declarations and assign values to them, if appropriate,
immediately after the comment header. This will help you keep
the declarations easy to find, as shown here:

-- Macro name: LOGON.XWS
-- Date: 6/24/92
-- Author: John Doe
integer count, access_number
count = 1
access_number = NetID

Chapter 1 Introducing CASL

Directives The body of a macro, which follows the declarations, is made up of
directives, or statements, that specify actions to be taken. You can
structure your macro statements with one statement on a line,
multiple statements on a line separated by colons (:), or a series
of statements enclosed in braces ({ }). The following example
shows one macro statement on a line:

print "Hello!"

Chapter 2, “Understanding the Basics of CASL,” provides
8 The Structure of Macros

examples of how to write statements using the alternate
structures.

To make your macro more readable and maintainable, you can
indent statements that are part of a larger construct. Indentation,
which is ignored by the compiler, is shown in the following
example of a for...next construct:

-- This segment prints 1 through 10 vertically.

integer count
for count = 1 to 10

print count
next

As shown in the preceding example, you can also use blank lines to
improve program readability.

Chapter 1 Introducing CASL

The Elements of a Macro

Your macros can consist of many different kinds of language
elements. The sample macro you develop in a later section
contains examples of many of them. A brief description of the more
commonly used CASL components follows.

Statements Statements perform such functions as assignment of values, file
The Elements of a Macro 9

input/output, file transfer, macro flow control, host interaction,
window control, and communications session management. CASL
statements are described in detail in Chapter 6, “CASL
Language.”

Variables Variables are elements that can store data. In your macros, you
can use variables that you create and variables that are
predeclared by CASL. CASL’s predeclared variables are described
in Chapter 6, “CASL Language.”

Constants Constants are elements that have a fixed value. Use the value
directly in your macro.

Expressions Expressions include arithmetic expressions, string expressions,
relational expressions, and boolean expressions.

Labels Labels are named reference points in a macro. A label can be the
destination of a goto statement or it can mark the beginning of a
subroutine. Guidelines for using the label statement in a macro
are presented in Chapter 6, “CASL Language.” Label scope rules
are explained in Chapter 3, “Variables, Arrays, Procedures, and
Functions.”

Procedures and
Functions

Procedures and functions perform unique tasks. They differ in
that functions return a value, and procedures do not. CASL
provides built-in functions, which are predeclared. You can use
these built-in elements as well as implement your own procedures
and functions. See Chapter 6, “CASL Language,” for details.

Chapter 1 Introducing CASL

Keywords Keywords make your macro more readable. CASL keywords are
reserved for a particular use in your macro; for example,
statement names and words that bind arguments are all reserved
keywords. You cannot use keywords as names for your variables,
functions, procedures, or subroutines. Chapter 2, “Understanding
the Basics of CASL,” contains a table of the keywords reserved by
CASL.
10 The Elements of a Macro

Chapter 1 Introducing CASL

Designing a Macro

In the process of developing and implementing a more complex
macro, the following is a typical development cycle:

■ Design the macro.

■ Write and edit the macro.

■ Compile the macro and locate any compile errors.
Designing a Macro 11

■ Fix the errors and compile again.

■ Run the macro to be sure it works.

■ Correct any problems.

Before you write a macro, you should map out what you want the
macro to accomplish. This step in the development cycle is
especially important when you create macros to use with
communications programs. It is difficult to predict exactly what
another computer will do during a communication session.
Therefore, it is advisable to design your macro to handle any type
of situation that may occur.

Your macro design can be as simple as a list of steps that outline
the goals you want to accomplish. You can produce more detailed
design plans by drawing flow charts. Listing goals and drawing
flow charts are not always necessary, but they can often save you
hours of work later.

Chapter 1 Introducing CASL

Sample: A Basic Logon Macro

In this sample, you send a logon sequence to MCI Mail. The
example assumes that your macro will run in a trouble-free
environment, that is, it will not encounter errors or slow responses
from the host.

/* This macro shows how to display messages and
send a user ID and password to MCI Mail. */
12 Sample: A Basic Logon Macro

-- Macro name: SAMPLE1.XWS
-- Created: 6/24/92 - Jane Smith

/* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"

/* Send a carriage return (CR) to get MCI's
attention and then send the logon user ID and
password. */

reply -- Send a CR
wait 2 seconds -- Wait for prompt
reply userid -- Send User ID
wait 2 seconds -- Wait for prompt
reply password -- Send password

message 'MCI auto-logon complete'-- Tell the user

end -- End the macro

Describing the
Purpose of the
Macro

The macro begins with a comment describing the purpose of the
macro.

/* This macro shows how to display messages and
send a user ID and password to MCI Mail. */

This is a block comment, which is enclosed in the symbol pair /*
and */. When you start your macro with an explanatory comment,
you assist other macro writers who later need to understand your
work.

Chapter 1 Introducing CASL

Documenting the
Macro's History

The sample macro comment header also provides a history of the
script’s development, including the macro file name, the creation
date, and the author's name. This comment begins with a double
hyphen, which tells the macro compiler that this is a line
comment. Line comments do not require an end-of-comment
symbol.

-- Macro name: SAMPLE.XWS
-- Created: 6/24/92 - Jane Smith
Sample: A Basic Logon Macro 13

After subsequent macro modifications, the header might appear as
follows:

-- Macro name: SAMPLE.XWS
-- Created: 6/24/91 - Jane Smith
-- Modified: 3/12/92 - Jane Smith
-- Modified: 7/16/92 - John Doe

The additional comments record the history of the macro
development.

Displaying a
Message

The first line of code displays a message that tells the user what is
occurring. To display this type of simple message, use the
message statement.

message "MCI Mail auto-logon in progress"

Using String
Constants

As you can see in the message statement, the words that are
displayed are enclosed in quotation marks. A character string
enclosed in quotation marks is called a string constant. When you
use CASL, you must enclose all string constants with quotation
marks. You can use either double quotation marks, as shown in
the preceding example, or single quotation marks, as shown in the
script’s second message.

message 'MCI auto-logon complete'

Be sure to use the same type of beginning and ending quotation
marks.

Chapter 1 Introducing CASL

Establishing
Communications
with MCI Mail

To establish communications with MCI Mail, use the reply
statement.

reply

When you use the reply statement without an argument, a
carriage return is sent to the host. This alerts the host to prompt
for a user ID.

Waiting for a After you send a carriage return to the host, you should wait for a
14 Sample: A Basic Logon Macro

Prompt from the
Host

brief period to allow the host to send a prompt.

wait 2 seconds

The wait statement causes the macro to pause for two seconds to
allow the host to respond with the first prompt. The amount of
time to wait depends on your operating environment and the host.

Sending the Logon
Sequence

Once you have set up the connection, you can send your user ID
and password. To do this, use two reply statements—one to send
the user ID and one to send the password. Be sure to wait for a
brief period before sending the second reply statement to allow
time for the host to send the password prompt.

reply userid
wait 2 seconds
reply password

Using CASL
Predeclared
Variables

CASL provides a rich set of predeclared variables, which include
system variables and module variables. The sample macro
contains two of the predeclared system variables: userid and
password .

userid and password are set up as system variables to make it
easy for everyone to use CASL macros and also to help maintain
security. You can define these variables from Accessory Manager
by clicking Session Preferences from the Options menu and
clicking the CASL Macro tab. You can also modify these variables
in a macro. The sample macro uses the predefined contents of the
variables to send the user ID and password to MCI Mail.

reply userid
reply password

Chapter 1 Introducing CASL

Using Keywords In the wait statement, you find the word seconds .

wait 2 seconds

This word is one of many CASL keywords that make your macro
more readable and flexible. Use the keywords only where specified
in the various language elements.

Ending the Macro There are several ways to end a macro, depending on the reason
for its termination. The most common way is to use the end
Sample: A Basic Logon Macro 15

statement, as shown in the sample macro.

The end statement brings the macro to an orderly conclusion.
Other CASL statements, such as halt , quit , and terminate ,
cause related macros, sessions, or Accessory Manager to end also.
These statements are discussed in detail in Chapter 6, “CASL
Language.”

Using Comments
and Blank Lines

Throughout the sample macro there are comments explaining
what the programming code is to accomplish. Some of the
comments are block comments, which are enclosed in the symbol
pair /* and */ .

/* Display a message on the status line to tell the
user what is going on. */

Other comments are line comments.

-- Macro name: SAMPLE.XWS
reply -- Send a CR

As you can see, the line comments begin with a double dash (--).
You can use both of these commenting methods in your macro.

The sample macro also shows how to use blank lines to make a
macro more readable. You can use blank lines almost anywhere in
your macro.

Chapter 1 Introducing CASL

Sample: Verifying the Host Connection

The previous sample macro assumed that MCI Mail responded to
the initial carriage return within the expected time frame. But
this may not always be the case. The following sample macro
shows how to verify that communications have, in fact, been
established.

/* This macro shows how to display messages and
16 Sample: Verifying the Host Connection

send a user ID and password to MCI Mail. It also
verifies that the MCI Mail connection is active. */

-- Macro name:SAMPLE2.XWS
-- Created:6/24/92 - Jane Smith
-- Modified:6/25/92 - Jane Smith (Added code to
-- check for the "port:" prompt.)

/* First, define the required variable. */

integer i

/* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"

/* Try to get MCI Mail's attention by sending a
carriage return (CR) until the "port:" prompt is
received. */

i = 1 -- Initialize the
-- variable to 1

while i <= 10 -- Perform while i is
-- less than or equal
-- to 10

reply -- Send a CR
wait 2 seconds for "port:" -- Wait for prompt
if not timeout then -- If no timeout
{

goto LOGIN -- Branch to
LOGIN to

-- wait for prompts
}
i = i + 1 -- Increment counter

wend

Chapter 1 Introducing CASL

/* Could not get MCI Mail's attention. Tell the
user and hang up. */

alert "System not responding - Logon canceled.", ok
bye -- Disconnect
end -- End

label LOGIN
wait for "name:" -- First prompt
reply userid -- Send user ID
Sample: Verifying the Host Connection 17

wait for "password:" -- Next prompt
reply password -- Send password
message 'MCI auto-logon complete' -- Tell the user

end -- End the macro

Declaring
Variables

As in the first sample macro, this sample starts with a description
of its purpose and an outline of its history. (The comment header
is updated to reflect a modification to the original macro.) This
macro adds functionality that takes control in the event that MCI
Mail does not respond to the initial reply statement.

First the macro declares a variable that it will use as part of a
conditional expression that determines how long to perform a
task. As part of the task, it sends a carriage return to establish
communications with MCI Mail and then waits for the expected
character string from the application. If a time-out does not occur,
the macro branches to a different location to send the logon
sequence to the application. If, however, communications cannot
be established after ten carriage returns are sent, the macro alerts
the user to the failure, disconnects the session, and ends.

To declare a variable, specify a data-type identifier and a variable
name. In the sample macro, a variable named i , with a data type
of integer , is declared.

integer i

This macro uses only one variable. If your macro contains multiple
variables of the same data type, you can declare all of them on the
same line.

integer i, tries

Note: If the variables have different data types, you must
declare them on separate lines.

Chapter 1 Introducing CASL

Initializing
Variables

The macro compiler initializes an integer variable to a default
value of 0. To initialize the variable to a different value, use the
equal sign (=). In the sample macro, the i variable is initialized
to the value 1.

i = 1

Performing a Task
While a Condition
is True

To execute statements repeatedly while a condition is true, use the
while...wend construct. If the condition is initially false, the
statements are not executed at all. This macro uses the
18 Sample: Verifying the Host Connection

while...wend construct to control the process of connecting to
MCI Mail.

while i <= 10
 reply
 wait 2 seconds for "port:"
 if not timeout then
{
 goto LOGIN
 }
 i = i + 1
wend

The statements between the while and wend are continually
executed until the condition i <= 10 is no longer true. Then
control passes to the statement following the wend.

Using a Relational
Expression to
Control the
Process

Expressions that use relational operators (such as < and =) are
called relational expressions. When you use these operators, the
result is always a boolean value (true or false). In this macro, the
relational expression i <= 10 is used to determine how many
times the while...wend construct is performed. As long as the
condition is true, the statements within the construct are
executed. When the condition is no longer true, the statement
following the wend is executed.

Waiting for a
Character String

If you want your macro to wait for one specific text string, use the
wait statement. This sample macro waits for the character string
"port: " to ensure that a connection with MCI Mail is established.
To prevent the macro from waiting forever, a duration time of two
seconds is specified.

wait 2 seconds for "port:"

You can determine if a time-out occurred before the character
string arrived, as explained in the next section.

Chapter 1 Introducing CASL

Checking if a
Timeout Occurred

Use the if...then construct and the timeout system variable to
determine the outcome of the wait statement.

if not timeout then
{
 goto LOGIN
}
i = i + 1

The timeout system variable is either true or false indicating
whether the last wait statement timed out. In this macro,
Sample: Verifying the Host Connection 19

timeout is true if the wait statement exceeds the time
specification of 2 seconds before finding the "port: " text string.

When you use the if...then construct, the statement(s)
following the then are executed only if the condition is true. In
this macro, the goto LOGIN statement is executed if a time-out
does not occur; if a time-out occurs, the i = i + 1 statement is
executed.

Testing the
Outcome with a
Boolean
Expression

The condition you use in an if...then statement is usually a
boolean expression. Boolean expressions return either true or
false. Your boolean expressions can be simple, as shown in this
macro:

if not timeout then

You can also use more complex expressions, involving multiple
conditions with boolean operators, as shown in the following
example:

if var1 >= 12 and var2 <= 5 then

In the sample macro, if the boolean expression is true, the macro
transfers control to a logon routine, which is located in a different
part of the macro, as explained in the next section.

Branching to a
Different Macro
Location

Sometimes it is preferable to handle a certain piece of coding logic
in a separate part of a macro. To branch to this location, you can
use the goto statement.

if not timeout then
{
 goto LOGIN
}

To enable the macro compiler to know where to branch, you must
supply a label name in the goto statement. In the sample

Chapter 1 Introducing CASL

macro, the label LOGIN is used to indicate the location where the
next logical piece of code is located. The actual location is
identified by the label statement.

label LOGIN

CASL provides another statement that allows you to branch to a
label: gosub...return . For detailed information about this
statement, refer to “gosub...return (statements)” on page 209.
20 Sample: Verifying the Host Connection

Continuing the
Logon if the
Connection Is
Established

If the macro receives the "port: " prompt before a time-out occurs,
it sends the logon sequence to the host, displays a message, and
ends.

label LOGIN
wait for "name:"
reply userid
wait for "password:"
reply password
message 'MCI auto-logon complete'
end

If the "port: " prompt does not arrive in time, the macro
increments the while...wend conditional counter.

Incrementing a
Counter Using an
Arithmetic
Expression

The number of times the while...wend construct is performed
depends on the value in the variable i . To increment that value,
you must use an arithmetic expression. Arithmetic expressions
consist of numeric arguments and arithmetic operators. In the
sample macro, the addition operator, which is a plus sign (+), is
used to add 1 to i .

i = i + 1

The counter continues to increment until the host sends the
character string "port: " or until the counter’s value no longer
satisfies the condition for the while...wend construct (i <=
10) . If the host does not respond, the macro alerts the user to the
failure.

Alerting the User if
the Connection
Failed

In general, the sample macro uses the message statement to
inform the user of current events. A message, which is displayed
without a dialog box, does not require any user intervention and is
replaced by other messages.

Chapter 1 Introducing CASL

To display information to which the user must respond, use the
alert statement. The alert statement displays a message in a
dialog box, which requires the user to choose a command to exit
the dialog box. In the sample macro, the alert statement
provides an OK button for the user.

alert "System not responding - Logon canceled.", ok

The macro pauses at the alert statement until the user clicks
OK.
Sample: Verifying the Host Connection 21

Disconnecting the
Session

If the connection with MCI Mail cannot be established, the macro
uses the bye statement to end the session. The bye statement
immediately disconnects the current session.

Using Indentation As you can see, some of the lines of code in the macro are indented.
For instance, the code within the while...wend loop is indented.

while i <= 10
reply
wait 2 seconds for "port:"
if not timeout then
{

goto LOGIN
}
i = i + 1

wend

Indentation is not required, but it helps to make your macro more
readable. If indentation was not used in the sample macro, it
would be difficult to determine which lines of code applied to the
while...wend construct.

Chapter 1 Introducing CASL

Using Braces with
a Statement Group

You can use braces to enclose one or more statements that belong
together. In the sample macro, braces enclose the goto statement
that follows the if...then statement, indicating that the goto
statement is part of the if...then construct.

if not timeout then
{
 goto LOGIN
}

22 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL

Sample: Controlling the Entire Logon Process

In the previous examples, the sample macros did not verify the
logon prompts sent by the host and therefore did not take
corrective action if a prompt never appeared. In this macro, you
can see how to use the watch...endwatch construct, within a
while...wend loop, to wait for any one of multiple character
strings from the host and then take appropriate action based on
the string that is received. The programming logic in this macro
Sample: Controlling the Entire Logon Process 23

gives you greater control over the sequence of events that may
occur when communicating with your host.

/* This macro shows how to display messages and
send a user ID and password to MCI Mail. It also
verifies that the MCI Mail connection is active and
uses the watch statement to verify that the logon
sequence is successfully sent to the host. */

-- Macro name: SAMPLE3.XWS
-- Created: 6/24/92 - Jane Smith
-- Modified: 6/25/92 - Jane Smith (Added code to
-- check for the "port:" prompt.)
-- Modified: 7/02/92 - John Jones (Added code to
-- check for specific logon
-- prompts.)

/* First, define the required variables. */

integer i, tries

/* Display a message on the status line to tell the
user what is going on. */

message "MCI Mail auto-logon in progress"

/* Send a carriage return until the "port:" prompt
is received. */

i = 1 -- Initialize
-- variable

while i <= 10 -- Perform while i is
-- less than or equal
-- to 10

reply -- Send CR
wait 2 seconds for "port:" -- Wait for prompt

Chapter 1 Introducing CASL

if not timeout then goto LOGIN -- If no timeout,
-- branch to LOGIN
-- to check next
-- prompts

i = i + 1 -- Increment counter
wend

/* Could not get MCI Mail's attention. Tell the
user and hang up. */
24 Sample: Controlling the Entire Logon Process

alert "System not responding - Logon canceled.", ok
bye -- Disconnect
end -- End the macro

label LOGIN -- Branch-to location

/* Try to log on to MCI Mail for 50 seconds. If not
successful, disconnect the session and exit. */

tries = 1 -- Initialize
-- variable

while online and tries < 5 -- Perform while both
-- conditions are
-- true

watch 10 seconds for -- Wait for any one
-- of the following
-- host responses

quiet 2 seconds : reply
"name:" : wait 5 ticks : reply userid
"password:" : wait 5 ticks : reply password
"sorry, inc" : wait 5 ticks : bye : ...

message "Unable to log on." : end
"COM" : alarm 1 : message "MCI " + ...

"Mail auto-logon complete." : end
"call Customer Service" : ...
 alert "Connection refused.", ok : end

endwatch
tries = tries + 1 -- Increment counter
wend

if tries < 5 then -- If not successful
{
bye -- Disconnect
alert "Lost the connection.", ok -- Tell the user
}
end -- End

Chapter 1 Introducing CASL

As in the second sample macro, which verified the MCI Mail
connection, this macro contains the appropriate lead-in comments,
attempts to establish communications with MCI Mail, waits for
the "port: " prompt from the host, and branches to a different
location to handle the balance of the logon process. At this point,
however, this macro uses a more comprehensive technique to
ensure that it sends the correct logon responses to the host.

Based on two controlling conditions (the macro is online and
tries is less than 5), the macro repeatedly watches for one of
Sample: Controlling the Entire Logon Process 25

several host responses to arrive. If either of the two controlling
conditions becomes invalid, the logon process terminates.
Otherwise the macro responds appropriately to whichever host
prompt or message it receives.

Performing a Task
while Multiple
Conditions Are
True

In the previous sample macro, the while...wend construct
contained one relational expression that determined how many
times the while loop was repeated. This macro uses two conditions
to determine the duration of the loop: the result of the online
function and the result of a relational expression.

while online and tries < 5

As long as both conditions are true, the statements in the
while...wend construct are repeatedly executed. If either of the
conditions becomes false, macro execution continues with the
statement following the wend.

The online function returns true as long as the macro is online to
the host. The relational expression tries < 5 returns true as
long as tries is less than 5. Since the variable tries is
initialized to 1 before the while loop and then is incremented by 1
each time the loop is executed, the while...wend construct will
be repeated a maximum of four times. It may be repeated fewer
than four times, depending on what happens while the macro is
watching for one of several host responses.

Watching for One
of Several Host
Responses

If you know that the host may send one of several different
prompts, use the watch...endwatch construct with multiple
conditions to watch for each possible prompt or message. The
sample macro watches ten seconds for six potential conditions.

Write each watch condition as a separate entity. When one of the
conditions occurs, the statements for that watch condition are
executed and the watch...endwatch construct ends. If the ten-

Chapter 1 Introducing CASL

second time-out expires before a watch condition is satisfied,
processing returns to the while...wend construct. If both of the
while conditions are still true, the macro executes the
watch...endwatch construct again.

You need to write the actual watch statement only once for all of
the watch conditions.

watch 10 seconds for

Each watch condition, along with its accompanying directives, is
26 Sample: Controlling the Entire Logon Process

specified individually. These conditions are discussed in the
paragraphs that follow. As you can see in this macro, the watch
conditions are followed by a colon (:). The colon is required.

A Quiet Connection The first watch condition waits for the connection to be quiet for
two consecutive seconds.

quiet 2 seconds : reply

If this condition is met, the macro sends a carriage return to MCI
Mail and processing returns to the while...wend construct. If
the macro is still online and tries is less than 5, the
watch...endwatch construct is executed again.

The "name:" Prompt The second watch condition looks for the character string
"name:"

"name:" : wait 5 ticks : reply userid

If the macro receives the "name:" prompt, it waits five ticks (a
tick is one tenth of a second) and then sends the contents of
userid to MCI Mail. If the macro is still online and tries is
less than 5, the watch...endwatch construct is executed again.

The "password:"
Prompt

If the host sends the "password: " prompt, the macro executes the
statements associated with the third watch condition.

"password:" : wait 5 ticks : reply password

After a brief wait of five ticks, the macro sends the contents of the
system variable password to MCI Mail and then processing
returns to the while...wend construct. The watch...endwatch
construct is executed again if both of the while conditions remain
true.

Chapter 1 Introducing CASL

The "sorry, inc"
Message

The fourth watch condition looks for the character string "sorry ,
inc ".

"sorry, inc" : wait 5 ticks : bye : ...
message "Unable to log on." : end

If the macro receives this message, it waits five ticks, disconnects
the session, displays a message for the user, and ends. Processing
does not return to the while...wend construct if this character
string is received.
Sample: Controlling the Entire Logon Process 27

The "COM" Message If the host sends the "COM" message, the statements associated
with the fifth watch condition are executed.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

In this case, the macro recognizes that the logon process has
completed successfully. Therefore, it sounds an alarm to get the
user’s attention, displays an appropriate message, and ends.

The "call Customer
Service" Message

If the macro receives the "call Customer Service " message, it
executes the statements associate with the last watch condition.

"call Customer Service" : ...
alert "Connection refused.", ok : end

The macro displays a dialog box and waits for the user to click OK;
then it ends.

Sounding an
Alarm

To get the user’s attention, you can use the alarm statement to
make the PC emit a sound. This macro uses the alarm statement,
with an argument of 1.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

The alarm statement argument determines the type of sound that
the PC makes. In this case, an argument of 1 specifies that the PC
should play the .WAV file associated with the SystemAsterisk key
in the Windows Registry. For more information about alarm
sounds, refer to “alarm (statement)” on page 120.

Using the Line-
Continuation
Sequence

To write a directive that continues on another line, you must use
the line-continuation sequence (...) at the end of the line to be
continued. You can see an example of this in the sample macro.

Chapter 1 Introducing CASL

"sorry, inc" : wait 5 ticks : bye : ...
 message "Unable to log on." : end

If you have a string constant that is too long to fit on one line, you
can break the string into segments and use the line-continuation

Note: You can skip using the line continuation sequence and
keep the entire statement on one line. However, the statement
may be too long to fit in your editor window, and you will have
to scroll to the right and left to see the entire line.
28 Sample: Controlling the Entire Logon Process

sequence to indicate the string continues on another line. You
must enclose each string segment with quotation marks and use
the string concatenation operator (+) to join the strings.

"COM" : alarm 1 : message "MCI " + ...
 "Mail auto-logon complete." : end

Chapter 1 Introducing CASL

Compiling a CASL Macro

Once you have created and saved a CASL macro, you should
compile it to determine possible syntax errors. The compiler
converts your source macro into a binary, machine-readable form
and reports any errors that it detects. The compilation process
takes only a small amount of time. When you have corrected all of
the syntax errors, you can run the macro.
Compiling a CASL Macro 29

There are two types of macro files:

■ Source file (.XWS), which you create and edit

■ Executable file (.XWC), which is created when you compile your
macro

Procedure To compile a CASL macro, follow these steps:

1 If the CASL macro that you want to compile is not already open,
open it.

From an Accessory Manager session, click CASL Macro from the
Tools menu, click the desired .XWS file, and click Edit.

From the CASL Macro Editor, click Open from the File menu and
double-click the desired .XWS file.

2 From the Macro menu, click Compile.

3 If any compilation errors occur, correct the errors.

4 Repeat steps 2 and 3 until your macro compiles without errors.

Note: The macro compiler automatically compiles any macro
you run if the macro has not already been compiled or if the
most recent version of the source macro is newer than the
compiled version. However, you should compile your macros
before trying to run them to ensure that all syntax errors are
corrected.

Chapter 1 Introducing CASL

Running a CASL Macro

You can run macros at any of the following times:

■ When you start Accessory Manager (application start-up
macro)

■ When you open a session (session start-up macro)

■ When you click CASL Macro from the Tools menu, click the
30 Running a CASL Macro

desired macro, and click Run

■ When you click a toolbar or QuickPad button, press a key, or
double-click a HotSpot that has been configured to run a macro

■ When the left mouse double-click has been configured to run a
macro with the same name as the word under the mouse
pointer

■ When you click Run from the CASL Macro Editor’s Macro menu

For detailed information about these procedures, refer to the
online Help for Accessory Manager.

Understanding the
Basics of CASL 2
31

In This Chapter This chapter includes the following headings:

Statements . 32

Comments . 33

Identifiers . 35

Data Types . 36

Constants . 37

Expressions . 44

Arithmetic Expressions . 46

String Expressions . 50

Relational Expressions . 51

Boolean Expressions . 53

Type Conversion . 54

Compiler Directives . 56

Reserved Keywords . 58

Chapter 2 Understanding the Basics of CASL

Statements

Statements specify an action to be taken. You can write the
statements in any of the following ways:

■ One statement to a logical line, as shown in the following
example:

activate
32 Statements

■ Multiple statements to a logical line with a colon (:) between
each statement, as shown in the following example:

wait for "Enter user ID:" : reply userid
wait for "Enter password:" : reply password

■ A series of statements enclosed in braces ({ }), as shown in the
following example:

if online then
{
 reply userid
 wait for "?"
 reply password
}

Line Continuation
Characters

You can continue a statement on the next line by placing line
continuation characters (...) at the end of the previous line. You
can use the line continuation sequence anywhere in a macro
except inside quotation marks. The following example shows how
to use the line continuation characters:

proc add_integers takes integer one_num, ...
integer second_num

The line continuation sequence after the word one_num indicates
that there is more information to follow.

Chapter 2 Understanding the Basics of CASL

Comments

Use comments to document your macro. Comments are useful for
maintaining, modifying, or debugging the macro in the future.

You can add two types of comments to a macro:

■ Block comments

■ Line comments
Comments 33

Block Comments When you want to add a block of comments, enclose the comment
text with the symbol pair / * and */ as shown in the following
example:

/* This macro logs on to the host. First send the
host logon. Then send the user ID and password.*/

You can use block comments anywhere in a macro except in the
middle of an identifier (such as a function or variable name) or
inside a string constant. You can even nest comments in a block
comment; the macro processor sorts out the pairs correctly.

Be careful when using block comments, however. If you fail to
terminate the block comment correctly, the compiler will treat
every statement in the rest of the macro as part of the block
comment.

Line Comments Use line comments when your comment text is brief. Line
comments do not require a matching end-of-comment symbol.

There are two types of line comments:

■ Double hyphens (--)

■ Semicolon (;).

Double Hyphens When you use the double-hyphen indicator, any characters that
follow the hyphens, through the end of the line, are considered
comment text. Since double hyphens are used only to designate a

Note: Use double hyphens for your line comments because the
semicolon has special meaning for some of the CASL elements,
such as the print statement. The semicolon comment indicator
is supported only for backward compatibility.

Chapter 2 Understanding the Basics of CASL

comment, you can use them anywhere (except in the middle of
identifiers or string constants).

The following is an example of a double-hyphen comment:

-- Macro name: HELLO.XWS
-- Date: 12-18-92

Semicolon Use the semicolon indicator only in a location where you would
normally place a CASL statement, as shown in the following
34 Comments

examples:

print "Hi," : ; This is a comment

reply userid
; Send your user ID to the host

Chapter 2 Understanding the Basics of CASL

Identifiers

Each variable, procedure, function, label, and other type of
element used in a macro must have a unique name, referred to as
an identifier.

An identifier can be any length up to 128 characters. The first
character must be alphabetic, or one of the following special
characters: $, %, or _. The remaining characters can be alphabetic
Identifiers 35

characters, special characters, or numbers; spaces cannot be used.
Identifier names are not case-sensitive.

Unlike in some other programming languages (for example,
BASIC), using the percent (%) or dollar ($) symbol in a variable
name does not force the variable to be a particular data type.
CASL determines the data type of a variable from the keyword
used in its explicit declaration or from the type of expression
assigned to it in an implicit declaration. Refer to Chapter 3,
“Variables, Arrays, Procedures, and Functions,” for more
information on variable declarations.

Note: Do not use the same identifier for different elements (for
example, do not identify a variable with the same name
assigned to a procedure). Duplicate identifiers are an error.

Chapter 2 Understanding the Basics of CASL

Data Types

CASL supports the following data types:

Data Type Description

Integer The integer data type represents positive and negative
numbers. Internally, integers are stored as 32-bit signed
integers, so values between -2,147,483,648 and
2,147,483,647 are possible.
36 Data Types

Real The real data type represents positive and negative floating
point numbers. Internally, reals are stored as 4-byte IEEE
floating point numbers, consisting of a sign bit, an 8-bit excess
127-bit binary exponent, and a 23-bit mantissa. The range of
possible values is approximately 3.4E-38 to 3.4E+38.

String The string data type represents variable length strings. A null
string has zero length. The maximum length of any string is
32,767 characters.

A string variable has a particular length at any given time, but
the length can change when a new value is assigned to the
variable. The new length can be longer or shorter than the
original length of the string.

Boolean The boolean data type represents true or false values.

Byte The byte data type consists of unsigned, non-fractional values
of 0 (zero) to 255. It is often preferable to use bytes, rather
than integers, in arrays because bytes require less memory
than integers.

Word The word data type consists of unsigned, non-fractional
values from 0 (zero) to 65,535. As with the byte data type, you
may find it preferable to set up your arrays using words, rather
than integers.

Char The char data type consists of a single-character string that
can be assigned as strings or bytes.

Array The array data type consists of multiple elements of a data
type. You can have an array of integers, reals, strings,
booleans, bytes, words, or chars.

Note: For type-checking purposes, integer, byte, and word are
all considered integers.

Chapter 2 Understanding the Basics of CASL

Constants

A CASL constant can be one of the following four types:

■ Integer

■ Real

■ String
Constants 37

■ Boolean

Integer Constants Integer constants have one of the following formats:

Decimal Integers Decimal integers use a base of 10, which means that 0 through 9
are valid digits. The following are examples of decimal integers:

1
-61

Hexadecimal
Integers

Integer constants that end with an h or H are hexadecimal
constants. These constants use a base of 16; therefore, the digits of
the constant can be 0 through 9 and also a through f (lowercase or
uppercase).

The first digit of a hexadecimal constant must always be numeric.
If the leading digit is not numeric, you must supply a leading zero.
The following are examples of hexadecimal constants:

0F0H
3f8h

[-] digit ... Decimal integers

[-] digit ... {h | H} Hexadecimal integers

[-] digit ... {o | O | q | Q} Octal integers

[-] digit ... {b | B} Binary integers

[-] digit ... {k | K} Kilo integers

Chapter 2 Understanding the Basics of CASL

Octal Integers Integer constants that end with the letter o, O, q, or Q are octal
constants. These constants use a base of 8, which means that 0
through 7 are valid digits. The following are examples:

17o
17Q

Binary Integers Integer constants that end with a b or B are binary constants.
Valid digits are 0 (zero) or 1 (one). Since the binary suffix b or B is
also a valid hexadecimal digit, the macro processor treats a b or B
38 Constants

in an integer constant as a binary suffix only if the b or B is not
followed by a legitimate hexadecimal digit or by the hexadecimal
character h or H.

The following is an example of a binary constant:

1001001B

Kilo Integers Integer constants that end with a k or K are kilo integers. Valid
digits for this type of integer constant are 0 (zero) through 9.
When the macro processor encounters a k or K following an
integer constant, it multiplies the constant by 1,024. For example,
32K becomes 32,768.

The following are examples of kilo integers:

64K
128k

Real Constants Real constants specify a numeric value that may have a fractional
component. For CASL to recognize a constant as a real constant,
rather than as an integer constant, a decimal point (.) or the
exponent indicator (e or E) must appear somewhere in it. A real
constant must start with a digit (0 through 9) or a decimal point,
optionally preceded by a minus sign.

Real constants have one of the following formats:

[-] [digit ...] "." digit ... [exponent]
[-] digit ... exponent

The exponent has the following format:

{e | E} [+ | -] digit ...

Chapter 2 Understanding the Basics of CASL

The following are examples of real constants:

0.2
-0.4e10
12.2e+10
20.3e-4

String Constants String constants consist of a string of characters enclosed in single
quotation marks (') or double quotation marks ("). You must use
the same type of beginning and ending quotation marks. A null
Constants 39

string is represented as '' if you use single quotation marks or "" if
you use double quotation marks.

The following is an example of a string constant:

'This is a string'

In this example, the macro processor recognizes that This is a
string is a string constant because it is enclosed in single
quotation marks.

Embedded
Quotation Marks

If you have a quotation embedded in a string constant, use the
other type of quotation marks to enclose the embedded quotation,
as shown in the following example:

'She said, "Hello."'

In this example, the quotation Hello is enclosed in double
quotation marks because it is embedded in a longer string, which
is enclosed in single quotation marks.

Unprintable
Characters

To include an unprintable control character in a string constant,
put a carat symbol before the control character (for example, ^G
for the control-G). To specify a numeric string, enclose the string
in angle brackets (for example, <007> for the ASCII value 7). The
following table lists the control characters and their corresponding
ASCII values.

Chapter 2 Understanding the Basics of CASL

ASCII Control Codes The following table lists ASCII control codes and corresponding
control values.

ASCII Control+Character Name Description

0 ^@ NUL Null

1 ^A SOH Start of header

2 ^B STX Start of text

3 ^C ETX End of text
40 Constants

4 ^D EOT End of transmission

5 ^E ENQ Enquiry

6 ^F ACK Positive acknowledgment

7 ^G BEL Bell

8 ^H BS Backspace

9 ^I HT Horizontal tab

10 ^J LF Line feed

11 ^K VT Vertical tab

12 ^L FF Form feed

13 ^M CR Carriage return

14 ^N SO Shift out

15 ^O SI Shift in

16 ^P DLE Data link escape

17 ^Q DC1 Device control 1

18 ^R DC2 Device control 2

19 ^S DC3 Device control 3

20 ^T DC4 Device control 4

21 ^U NAK Negative acknowledgment

22 ^V SYN Synchronous idle

23 ^W ETB End of transmission block

24 ^X CAN Cancel

25 ^Y EM End of medium

26 ^Z SUB Substitute

Chapter 2 Understanding the Basics of CASL

27 ^[ESC Escape

28 ^\ FS File separator

29 ^] GS Group separator

30 ^^ RS Record separator

31 ^_ US Unit separator

ASCII Control+Character Name Description
Constants 41

To send a control code, use the Control+Character value or the
name listed in the preceding table. If you use the name, be sure to
enclose it in angle brackets. For example, you can use ^[or <ESC>
to represent the ASCII code for Escape. The macro processor
interprets this as the Escape code 1B hexadecimal.

To send the code as a string, precede it with a grave accent (`).

Special Characters Some characters have special meanings to Accessory Manager’s
CASL processor. If you want a special character to be recognized
as part of a string constant, precede the character with a grave
accent.

This is illustrated in the following examples:

■ reply "|"

■ reply "‘|"

In the first example, the macro processor interprets the "| " as a
carriage return. In the second example, the macro processor
interprets "| " as the vertical bar character.

Chapter 2 Understanding the Basics of CASL

The special characters are as follows:

Character Special Meaning to the CASL Processor

" Double quotation mark. Delimiter around a string
constant.

' Single quotation mark. Delimiter around a string
constant.

\ Backslash. Precedes an ASCII value.
42 Constants

If you want a grave accent to be recognized as part of the string,
precede it with another grave accent. The first one protects the
second.

Using the grave accent with these special characters is essential
when using the wait statement to wait for a string that contains
these characters. Refer to “wait (statement)” on page 334.

When working with a block mode terminal emulator, such as
InterCom® or PEP™, you often need to use the grave accent in a
press or reply statement that includes control characters. Refer
to “press (statement)” on page 272 and “reply (statement)” on
page 288.

Keystroke Names If you need to specify a key on the PC keyboard or a terminal
emulation keystroke in a string constant, enter it as follows:

"‘<Transmit>"

| Vertical bar. A carriage return.

` Grave accent. Marks special characters in a string.

^ Caret. Precedes another character to denote an ASCII
control character, as in ^A for start of header control
character.

< Less-than symbol. Used to mark the beginning of a
keystroke name .

Chapter 2 Understanding the Basics of CASL

String Constants
That Continue on a
New Line

When you have a string constant that is too long to fit on one line,
break the string into segments, enclosing each segment with
quotation marks, and use the string concatenation symbol (+) to
join the segments. Do not use the line continuation sequence (...)
or a carriage return inside the quotation marks. The following
example shows how to continue a string constant on a new line:

message "You are running a new system " + ...
"software version"
Constants 43

Boolean
Constants

A boolean constant is one of the following:

false
true

Chapter 2 Understanding the Basics of CASL

Expressions

CASL expressions include arithmetic, string, relational, and
boolean expressions. There is a specific order of evaluation applied
to these expressions based on precedence and the use of
parentheses. A type conversion can be performed for some
expressions. When a type conversion is performed, the original
type of the expression is converted to a different type. Type
conversion is explained later in this chapter.
44 Expressions

Operators perform mathematical, logical, and string operations on
expressions, or arguments. Most of the CASL operators have two
arguments in the following format:

argument1 operator argument2

argument1 and argument2 must be expressions of the valid type
for the operator involved. In general, you can use any expression
containing a syntactically correct mixture of arguments and
operators in a macro wherever the result is allowed. For example,
the following statements are functionally equivalent:

wait 9 seconds

wait 4 + 5 seconds

wait 3 * 3 seconds

wait 18 / 2 seconds

Chapter 2 Understanding the Basics of CASL

Order of
Evaluation

Expressions are normally evaluated based on the precedence of
the operators; higher precedence operators are applied before
lower precedence operators. You can control the order of
evaluation of any expression by using parentheses. Sub-
expressions inside parentheses are evaluated before the main
expression.

The general precedence of operators is as follows:

■ Highest. Arithmetic and string operators.
Expressions 45

■ Next highest. Relational operators.

■ Lowest. Boolean operators.

Arithmetic and string operators share the same precedence level
because they cannot be mixed. Arithmetic and string expressions
are completely evaluated before participating in relational
expressions. Relational expressions are completely evaluated
before participating in boolean expressions.

Within a particular type of expression, the precedence rules for
that type are followed.

Chapter 2 Understanding the Basics of CASL

Arithmetic Expressions

You build arithmetic expressions using numeric arguments and
arithmetic operators. Unary operators are evaluated from right to
left, and binary operators of the same precedence are evaluated
from left to right.

The standard arithmetic operators you can use are listed in groups
of decreasing precedence. Each operator has a symbolic
46 Arithmetic Expressions

representation and a name.

The operators with the highest precedence are as follows:

The operators with the second highest precedence are as follows:

The operators with the third highest precedence are as follows:

~ BitNot

- Negate

rol Rol

ror Ror

shl Shl

shr Shr

& BitAnd

^ BitXor

/ Division

\ IntDivision

mod Modulo

* Multiplication

Chapter 2 Understanding the Basics of CASL

The operators with the lowest precedence are as follows:

These operators, which are listed in alphabetical order, are
explained in the paragraphs that follow.

+ Addition

| BitOr

- Subtraction
Arithmetic Expressions 47

Addition produces the numeric sum of its arguments. The
following is an example:

2 + 2

BitAnd , BitOr , BitXor , and BitNot are bitwise operators. They
are common operators in the assembler language. In the following
diagrams, which show how these operators work, x and y are bit
arguments and z is the result of the bitwise operation.

BitAnd BitOr

x y z x y z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

BitXor BitNot

x y z x z

0 0 0 0 1

0 1 1 1 0

1 0 1

1 1 0

Chapter 2 Understanding the Basics of CASL

The following examples use BitAnd , BitOr , BitXor , and BitNot ,
in that order:

somevar = bitvar1 & bitvar2
somevar = somevar | bitvar3
somevar = somevar ^ bitvar3
somevar = ~ bitvar1

Division and IntDivision cause the mathematical division of
the first argument by the second argument. For Division , the
48 Arithmetic Expressions

result is a real (floating point) value if either of the two quantities
is a real; for IntDivision , only integers are allowed, and the
result is an integer, possibly truncated. The following are
examples:

x = 3.0 / 2.0 The result is 1.5

an_integer = 3 \ 2 The result is 1

Modulo returns the remainder after dividing its first argument by
its second argument, as shown in the following example:

10 mod 4 The result is 2

Multiplication is an algebraic operator that returns the
product of two arguments. The following is an example:

2 * 2

Negate is also called unary minus in some programming
languages. It multiplies a numeric value by minus one. The
Negate operator is used in the following example:

neg_num = - pos_num

Rol , Ror , Shl , and Shr are bitwise operators that either rotate or
shift the bits in an individual 8-bit, 16-bit, or 32-bit argument.

When you use these operators, the first argument has its value
moved the number of positions specified in the second argument.
In rotation, the bits that are moved off one end of the first
argument are moved back onto the other end of the argument. In
shifting, the bits that are moved off the end of the argument are
discarded and replaced with zeros on the other end of the
argument.

The Rol and Shl operators move bits to the left (toward the most
significant bit) while the Ror and Shr operators move bits to the

Chapter 2 Understanding the Basics of CASL

right (toward the least significant bit). The following are examples
of these operators:

print 1 ror 8
print 1 shr 8
print 1 rol 8
print 1 shl 8

For the first example, '16,777,216' is printed. For the second
example, '0' (zero) is printed. For the third and fourth examples,
Arithmetic Expressions 49

'256' is printed.

Subtraction reduces the first argument by the value in the
second argument. Both arguments must be numeric. The following
is an example:

4 - 2

Chapter 2 Understanding the Basics of CASL

String Expressions

There is only one string operator-the string concatenation
operator. However, CASL provides a comprehensive set of
statements and functions that you can use to perform other string
operations.

String String concatenation joins two strings. The string concatenation
50 String Expressions

Concatenation
Operation

operator is a plus sign (+).

When you use the string concatenation operator, two strings
connected by a plus sign (+) are joined together to make one long
string. This is shown in the following example:

"123" + "456" is the string "123456"

For a complete list and description of the statements and
functions that perform string operations, refer to Chapter 5,
“Functional Purpose of CASL Elements,” and Chapter 6, “CASL
Language.”

Chapter 2 Understanding the Basics of CASL

Relational Expressions

Relational expressions result in boolean values. The relational
operators have no precedence.

You can use the following relational operators to compare
numbers, strings, or booleans:

Operator Description
Relational Expressions 51

Equality compares two expressions (either numeric or string)
and returns true if the two items compared are exactly the same.
Trailing spaces are significant in string comparisons. The
following are examples of the Equality operation:

if a_variable = 2 then statement

GreaterOrEqual , GreaterThan , LessOrEqual , LessThan , and
Inequality are also comparison operators. They apply to
numeric quantities or strings. While the comparison of numeric
quantities is straightforward, the comparison of strings is more
complex.

In string comparisons, single characters are compared on the basis
of their ASCII collating sequence; therefore, "Z" is less than "a."
For longer strings, characters are compared position by position
until a character is found that is different; then the characters
that are different are compared on the basis of their ASCII
collating sequence.

= Equal

>= GreaterOrEqual

> GreaterThan

<> Inequality

<= LessOrEqual

< LessThan

Note: The equal sign is also used for variable assignment, as
shown in the following example where the variable
a_variable is assigned a value of 2:

a_variable = 2

Chapter 2 Understanding the Basics of CASL

The following examples show the LessThan , LessOrEqual ,
GreaterThan , and GreaterOrEqual operators:

if some_var < 2 then statement

if string1 <= string2 then statement

while length(a_string) > 12

statement until rec_pointer => max_records
52 Relational Expressions

Chapter 2 Understanding the Basics of CASL

Boolean Expressions

The boolean operators you can use are listed in the order of
decreasing precedence.

The operator with the highest precedence is not . The operator
with the next highest precedence is and . The operator with the
lowest precedence is or .
Boolean Expressions 53

The arguments to boolean operators can be boolean variables,
relational expressions, or other boolean expressions.

And, Or , and Not produce a true or false result from their
arguments, that is, they see their arguments only as true or false,
not as quantities. The And operator returns true only if both
arguments are true. The Or operator returns true if either or both
of its arguments are true. The Not operator returns the opposite of
its argument.

The following examples contain these operators:

if null(a_string) and x = 1 then statement
if counter > maximum or inkey then statement
if not eof(fl) and inkey <> 27 then statement
flip = not flip

If the value of the left argument of a logical operator is sufficient
to determine the outcome of the expression, the right argument is
not evaluated at all. This is the case when the left argument of the
And operator is false, or when the left argument of the Or operator
is true.

For instance, in the following example, the array reference
data[n] will never attempt to index beyond the end of the array.
If n were greater than 10, the expression n <= 10 would be false,
and the right argument would never be evaluated.

integer data[10]
if n <= 10 and data[n] >= 0 then statement

Chapter 2 Understanding the Basics of CASL

Type Conversion

You may find it is necessary to convert values from one type to
another. CASL provides the means to perform a variety of type
conversions. This section explains how to convert an integer to a
string, a string to an integer, an integer to a hexadecimal string,
and an ASCII value to its corresponding character string.
54 Type Conversion

Converting an
Integer to a String

To convert an integer to a string, use the str function. This
function does not add leading or trailing spaces.

The following example illustrates how to use the str function:

reply str(share_to_buy)

In this example, str converts share_to_buy to a string, which is
sent to the host with the reply statement.

Converting a
String to an
Integer

To convert a string to an integer, use the intval function. This
function ignores leading spaces and evaluates the string until a
non-numeric character is found.

You can convert a string to a decimal or hexadecimal integer. If
you need a hexadecimal integer, add an H to the end of the string.
If your hexadecimal string does not begin with a numeric
character, place a 0 at the beginning of the string. If you need a
kilo integer, add a K to the end of the string.

The following example illustrates how to use the intval function:

num = intval(user_input_string)

In this example, intval converts user_input_string to an
integer and returns the result in num.

Converting an
Integer to a
Hexadecimal
String

To convert an integer to a hexadecimal string, use the hex
function. If the integer is below 65,536, the string is four
characters long; otherwise, it is eight characters long.

The following example shows how to use this function:

print hex(32767)

In this example, the hex function converts the integer 32,767 to a
hexadecimal string and displays the result on the screen.

Chapter 2 Understanding the Basics of CASL

Converting an
ASCII Value to a
Character String

To convert an ASCII value to its corresponding one-byte character
string, use the chr function. The following is an example of how to
use this function:

cr = chr(13)

In this example, chr converts the ASCII value 13 to its
corresponding carriage return character and returns the result in
cr .

For more information on these and other CASL functions that
Type Conversion 55

perform type conversions, refer to Chapter 5, “Functional Purpose
of CASL Elements,” and Chapter 6, “CASL Language.”

Chapter 2 Understanding the Basics of CASL

Compiler Directives

Compiler directives provide instructions for the macro compiler.
CASL compiler directives let you do the following:

■ Suppress label information

■ Suppress line number information

■ Trap an error
56 Compiler Directives

■ Include an external file

■ Define a macro description

Suppressing
Label Information

By default, information about labels is included in the compiled
version of your macro. To suppress the label information, add the
genlabels off compiler directive at the beginning of your source
macro. The default for this directive is genlabels on .

Suppressing Line
Number
Information

Information about line numbers is also included as part of a
compiled macro. To suppress this information, add the genlines
off compiler directive at the beginning of your macro. The default
for this directive is genlines on .

Trapping an Error Use the trap compiler directive to enable and disable CASL’s
error trapping feature. Error trapping is disabled (trap off) by
default. To enable error trapping, set trap on just prior to a
statement that might generate an error. For additional
information about trapping and handling errors, refer to
Chapter 4, “Interacting with the Host, Users, and Other Macros.”

Note: If you use the genlabels off directive, you cannot use
the inscript function or the goto @ expression statement
in your macro.

Note: The trap compiler directive does not affect whether
errors occur. It simply provides a way to effectively handle the
errors if they do occur.

Chapter 2 Understanding the Basics of CASL

Including an
External File

Use the include compiler directive when you want to include
another file in the macro being compiled. The file is included in
the macro following the include directive, as if the included file
were part of the original file.

The include directive includes the file only once, no matter how
many times you use the directive. The reason for this is that
included files typically contain declarations, and including them
more than once causes duplicate declaration errors.
Compiler Directives 57

Defining a Macro
Description

Use the scriptdesc compiler directive to define descriptive text
for a macro.

For more detailed information about these compiler directives,
refer to Chapter 6, “CASL Language.”

Chapter 2 Understanding the Basics of CASL

Reserved Keywords

CASL reserves certain words called keywords. You may not use
any of the keywords as identifier names. The reserved words are
not case-sensitive.

Keywords include statements (such as watch), words that define
time (such as seconds and ticks), and words that bind
statements (such as for and next).
58 Reserved Keywords

The following are the CASL keywords.

abs accept across

activate activatesession active

alarm alert align

alluc and answer

append arg arrow

as asc assume

at attr aux

backups binary bitstrap

bitstrip black blue

bol bool boolean

border bow box

bright brown browse

builtin busycursor bye

byte call cancel

capacity capture case

cd chain char

char chdir checkbox

chmod choice choices

chr cksum class

clear close cls

cmode color compile

connected connectreliable copy

Chapter 2 Understanding the Basics of CASL

count crc ctext

curday curdir curdrive

curhour curminute curmonth

cursecond curyear cyan

date default definput

defoutput defpushbutton dehex
Reserved Keywords 59

delay delete deletesubstring

description destore detext

device devicevar dialmodifier

dialogbox dir direct

diskspace display do

down draw drive

drop echo edit

editor edittext else

end endcase enddialog

endfunc endproc endwatch

enhex enstore entext

environ eof eoj

eol eop eow

errclass errno error

exec exists exit

extern external fail

false field fileattr

filedate filefind filesize

filetime fill filter

filtervar fkey flashing

flood fncheck fnstrip

focus footer for

form forward freefile

freemem freetrack from

Chapter 2 Understanding the Basics of CASL

func function genlabels

genlines get getnextline

global go gosub

goto gray green

group groupbox halt

header height help
60 Reserved Keywords

hex hidden hide

hideallquickpads hidequickpad hms

hollow hour hours

if include index

inject inkey input

inscript insert instr

integer intval inverse

is isnt istrackhit

jump keep key

keys label left

leftjustify len length

library lift line

listbox load loadquickpad

loc locked lowcase

lprint ltext magenta

match max maximize

maxlength md message

mid millisecond min

minimize minus minute

minutes mkdir mkint

mkstr mod modem

move name netid

new next nextchar

nextline noask noblanks

Chapter 2 Understanding the Basics of CASL

nobye nocase none

nopause normal not

null number octal

of off offset

ok on online

only ontime open
Reserved Keywords 61

optional or output

over pack pad

page paint pan

password pause perform

picture plus pop

preserve press print

printer proc procedure

prompt protocol protocolvar

public pure pushbutton

put quiet quit

quote radiobutton random

rd read real

receive red redialcount

redialwait release remove

rename repeat replace

reply request reset

restore resume return

returns reverse right

rmdir rol ror

routine rtext run

save script scriptdesc

scroll secno second

seconds seek send

sendbreak session sessionvar

Chapter 2 Understanding the Basics of CASL

sessname sessno setup

setvar shl show

showquickpad shr shut

size slice some

sort space start

startup statevar static
62 Reserved Keywords

status step str

string strip stripclass

stripwild stroke style

subst subtitle swap

systemvar systime tabstop

tabwidth takes terminal

terminalvar terminate then

tick ticks time

timeout times title

to toggle trace

track trackhit trap

true type unloadallquickpads

unloadquickpad until up

upcase userid val

version view viewport

wait watch weekday

wend while white

width winchar window

winsizex winsizey winstring

winversion word write

xpos xsep yellow

yourself ypos ysep

zone zoom

Variables, Arrays,
Procedures, and Functions 3
63

In This Chapter In a CASL macro, you use declarations to define your variables,
arrays, procedures, and functions. Declarations make your macro
more readable and maintainable; in some instances, they are
mandatory.

This chapter contains information about declaring elements in the
CASL language. It includes the following headings:

Variables . 64

Explicit Variable Declarations . 65

Implicit Variable Declarations . 67

Arrays . 68

Procedures . 70

Functions . 73

Scope Rules . 75

Calling DLL Functions . 77

Chapter 3 Variables, Arrays, Procedures, and Functions

Variables

A variable is a language element whose value can change during
the course of running a macro. You use variables as storage areas
where you can keep the results of a computation, data arriving
from the host, and other data such as a user name or password.

With CASL, you can use two types of variables:

■

64 Variables

Predefined variables (which you can reference in your macro)

■ User-defined variables (which you define in your macro)

Predefined
Variables

There are two types of predefined variables:

■ System variables

■ Module variables

System variables contain user-profile (or configuration)
information or session information. The variables that contain
session information are stored in a session profile. Each session
entry contains session parameters such as the terminal emulation
type, user ID, and password.

Module variables contain tool-specific information and are stored
in a session profile. For example, if a session uses the
INFOConnect connection tool, the entry contains settings for
INFOConnect paths and so on. To reference these variables, use
the assume statement as follows:

assume device "ICSTOOL"

User-Defined
Variables

User-defined variables are those you define in your macro. These
variables can be local to one macro or shared across multiple
macros.

Chapter 3 Variables, Arrays, Procedures, and Functions

Explicit Variable Declarations

Explicitly declare your variables to make your macro more
readable and maintainable.

Explicit declarations consist of a data-type identifier and a
variable name. You can use any variable name you like as long as
it is not the same as that of another language element in your
macro. It is often helpful to assign a name that reflects the
Explicit Variable Declarations 65

variable's purpose; for example, the name file_name is more
descriptive than the name xyz .

Your variable names can contain any combination of
alphanumeric characters as well as some symbols. The first
character must be alphabetic, or one of these special characters:
$, %, or _. Variable names can consist of up to 32,767 characters.

The following illustrates the general form of explicit declaration:

data_type name [, name]...

Single-Variable
Declarations

You can declare variables one to a line. The following is an
example of single declaration:

integer counter

In this example, counter is declared as an integer variable.

Multiple-Variable
Declarations

You can also declare more than one variable on a logical line, but
the variables must be of the same type. Multiple declaration is
shown in the following example:

integer row, col

In this example, both row and col are declared as integer
variables.

Chapter 3 Variables, Arrays, Procedures, and Functions

The following are examples of explicit declarations for other data
types:

boolean failed
real percentage
string file_name, extension

Initializers Variables you declare explicitly are automatically initialized by
the compiler: strings are initialized to nulls; reals and integers
are initialized to zero. To initialize these variables to a different
66 Explicit Variable Declarations

value, use the assignment operator (=).

The following are examples of variable initialization:

a_var = 10

amount = "Quantity"

In the first example, the integer variable a_var is initialized to
10 . In the second example, the string variable amount is
initialized to Quantity .

Public and
External Variables

If you want to share a variable among multiple macros, declare
the variable as public in the main macro (parent macro) and as
external in the other macros (child macros). The data type of the
variables must match. If the variable is an array, the declared
array size must match. As with any other explicit declaration, you
can declare multiple public or external variables of the same
type on one logical line, separating the variable names with
commas.

The following are examples of public and external variables:

public integer user_name (parent macro declaration)

external integer user_name (child macro declaration)

For additional information about public and external
variables, refer to Chapter 4, “Interacting with the Host, Users,
and Other Macros.”

Chapter 3 Variables, Arrays, Procedures, and Functions

Implicit Variable Declarations

You can implicitly declare a variable if the first time it is used it is
possible to infer its type from the context. However, use implicit
declarations sparingly, for your macro is less readable and
maintainable when variables are not declared explicitly.

The most common case of implicit declaration is where the
variable is assigned a value. In this case, the type of the variable is
Implicit Variable Declarations 67

implicitly declared to match the type of the expression assigned to
it. In the following example, user_name is implicitly declared as a
string variable because the string "John" is assigned to it.
"John" is enclosed in quotation marks; you must use quotation
marks to enclose a data string assigned to a string variable.

user_name = "John"

The same concept applies for all other cases where the variable
type can be inferred. For instance, the following example
implicitly declares count to be an integer variable because the
initial value is an integer.

for count = 1 to 10
...
...

next

Chapter 3 Variables, Arrays, Procedures, and Functions

Arrays

Arrays require an explicit declaration; it is not possible to
implicitly declare an array.

An array declaration is similar to other declarations, but you must
also declare the dimensions. Enclose the dimensions of the array
in square brackets.
68 Arrays

Single-
Dimensional
Arrays

Some arrays have only one dimension. For example, you declare a
single-dimension array of 30 integers as follows:

integer epsilon[29]

In this example, the size of the array epsilon is 29 , but there are
actually 30 elements in the array because the first element is
element 0 (zero).

Multidimensional
Arrays

Arrays can also be multidimensional. You declare multiple
dimensions by providing multiple dimension sizes, separated by
commas. For example, you declare a 10-by-20 string matrix in the
following way:

string matrix[9, 19]

Note: The elements in CASL arrays are numbered starting
from zero; therefore, there are actually n + 1 elements in an
array of size n.

Chapter 3 Variables, Arrays, Procedures, and Functions

Arrays with
Alternative
Bounds

You can use alternative bounds declarations when you need to use
bounds other than the default. The following examples show how
to declare arrays with alternative bounds:

integer vector[0:99]
integer profile[3:6]
integer samples[-10:10]

The first example, an array of 100 elements, is equivalent to
integer vector[99] because 0 is the default lower bound. In
the second example, the array profile , an array of 4 elements, is
Arrays 69

indexed from 3 to 6. The array samples , an array of 21 elements,
is indexed from -10 to 10 in the third example.

When you declare multiple dimensions, you can use alternative
bounds declarations for each dimension individually. For example,
declare a matrix whose first dimension is indexed from 10 to 30
and whose second dimension contains 100 integers in the
following way:

integer data[10:30, 99]

Chapter 3 Variables, Arrays, Procedures, and Functions

Procedures

A procedures definition is a declaration because it only defines
the statements that make up the procedure. The statements
themselves are not executed until the procedure is called.

You must declare a procedure before you use it. A procedure
cannot be inside a function or another procedure.
70 Procedures

Procedures are useful for replacing groups of statements that are
frequently used. For example, a macro that repeatedly performs a
complicated sequence of steps can use one common procedure to
perform the task. The statement(s) that call the procedure simply
pass the appropriate information to the procedure, and it performs
the task. If you need to return a result, consider using a function
instead of a procedure.

The following example illustrates the syntax of a procedure
definition:

proc name [takes arglist]
...
...

endproc

Procedure
Argument Lists

As shown in the preceding syntax illustration, a procedure can
have an argument list. The arglist is optional, and is used only
if the procedure takes arguments. If arguments are included, you
must use the same number and type of arguments in both the
procedure and the statement that calls the procedure. The
arguments are assumed to be strings unless otherwise specified.

The syntax of arglist is as follows:

[type] < argument [, [type] argument]...

Chapter 3 Variables, Arrays, Procedures, and Functions

The following is an example of a procedure definition:

/*
This procedure sends the user ID and password to
the host.
*/
proc logon takes username, passwrd

reply username
wait 2 seconds
reply passwrd

endproc
Procedures 71

In this example, the statements enclosed in the /* and */
symbols are comments describing the procedure’s purpose. The
procedure, which is named logon , expects two string
arguments—username and passwrd —and it sends the
arguments to the host. When the procedure ends (endproc),
control is passed to the statement immediately following the one
that called the procedure.

You call this procedure as follows:

logon userid, password

The arguments userid and password are passed to the
procedure logon .

Forward
Declarations for
Procedures

You can use forward declarations to declare procedures whose
definitions occur later in the macro. The syntax of a forward
procedure declaration is the same as the first line of a procedure
definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your
procedures near the end of your macro. A procedure must be
declared before you can call it; the forward declaration provides
the means to declare a procedure and later define what the
procedure is to perform.

The following syntax is used for a forward declaration:

proc name [takes arglist] forward

When the procedure definition is encountered, each of its
arguments (if provided) must match the data type of the
corresponding argument in the forward declaration.

Chapter 3 Variables, Arrays, Procedures, and Functions

The following example shows how to set up the logon procedure
using a forward declaration:

proc logon takes ... -- The forward declaration
username, passwrd forward

logon userid, password -- The procedure call

proc logon takes username, passwrd -- The procedure
reply username
72 Procedures

wait 2 seconds
reply passwrd

endproc

You can also use the perform statement to call a procedure before
it is declared. This is shown in the following example:

perform logon userid, password

External
Procedures

Procedures can be an integral part of a macro, or they can be in
separate files. The latter allows you to keep a library of procedures
you often use; you don’t have to duplicate the procedure for each
macro you create.

To include an external procedure in a macro, use the include
compiler directive. For example, suppose the logon procedure,
which was described previously, is an external procedure that is
stored in a file called MYPROCS.XWS. To include it in your
macro, add the following line at the beginning of the macro:

include "myprocs"

For more information about the proc...endproc procedure
construct, the perform statement, and the include compiler
directive, refer to Chapter 6, “CASL Language.”

Chapter 3 Variables, Arrays, Procedures, and Functions

Functions

A function is similar to a procedure, but it returns a value. You
must declare the type of the return value within the function
definition and specify a return value before returning.

You must declare a function before you can use it. A function
cannot be inside a procedure or another function.
Functions 73

The syntax of a function definition is as follows:

func name [(arglist)] returns type
...
...

endfunc

Function
Argument Lists

As for a procedure, the arglist is optional. The syntax of the
arglist is the same as for procedure arguments.

The following example illustrates a function with an arglist :

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and y are the function arguments.
The values of x and y are passed to the function when it is called.
The function returns one or the other value depending on the
outcome of the if...then...else comparison. If x is less than
y , x is the return value; if x is not less than y , the value of y is
returned.

You call this function as follows:

integer return_value

return_value = calc(3, 8)

The integer values of 3 and 8 are passed to the function calc
where they are used as the values x and y in the function. The
function returns the result of its calculations in the variable
return_value.

Chapter 3 Variables, Arrays, Procedures, and Functions

Forward
Declarations for
Functions

You can use forward declarations to declare functions whose
definition occurs later in the macro. The syntax of a forward
function declaration is the same as the first line of a function
definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your
functions near the end of your macro. A function must be declared
before you can call it. The forward declaration provides the means
to declare a function and later define what the function is to do.
The following syntax is used for a forward declaration:
74 Functions

func name [(arglist)] returns type ...
forward

When the function definition is encountered, each of its arguments
(if provided) must match the data type of the corresponding
argument in the forward declaration.

The following shows how to set up the calc function using a
forward declaration:

integer return_value -- The integer declaration

func calc(integer x, integer y) ... -- The forward
returns integer forward -- declaration

return_value = calc(3,8) -- The function call

func calc(integer x, integer y) ... -- The function
returns integer
if x < y then return x else return y

endfunc

External Functions As with procedures, functions can be in separate files. To include
an external function in a macro, use the include compiler
directive. For example, if the calc function is external to the
macro and is stored in a file called MYPROCS.XWS, add the
following line at the beginning of the macro to include it in the
macro:

include "myprocs"

For more information about the func...endfunc function and
the include compiler directive, refer to Chapter 6, “CASL
Language.”

Chapter 3 Variables, Arrays, Procedures, and Functions

Scope Rules

You can reference a variable from the line on which it is declared
until the end of its scope. This is true for both implicit and explicit
declarations.

Local Variables The variables you declare inside procedures and functions are
local variables. The scope of local variables terminates when the
Scope Rules 75

function or procedure that defines them ends. You can refer to and
modify these variables only while the procedure or function is
executing. Their values are lost when the procedure or function
returns control.

Global Variables The variables you declare outside procedures and functions are
global variables. The scope of global variables terminates when
the macro ends. You can refer to and modify these variables
within and outside procedures and functions. They retain their
values throughout execution of the macro.

Default Variable
Initialization
Values

The local and global variables you declare are initialized to default
values when they are created. The default value for each data type
is as follows:

Local variables are initialized each time the procedure or function
begins execution. Global variables are initialized once when the
macro begins execution.

Procedure and function arguments are like local variables, but
they are not initialized to default values like other local variables.
They receive their values from the actual arguments.

Data Type Default Value

integer 0

real 0.0

string "" (the null string)

boolean False

array Each element is initialized to the array-type default.

Chapter 3 Variables, Arrays, Procedures, and Functions

Labels The scope of labels you declare inside procedures and functions
terminates when the function or procedure that defines them
ends. You can refer to these labels only while the procedure or
function is executing, and only from within the procedure or
function.

The scope of labels you declare outside procedures and functions
terminates when the macro ends. Procedures and functions cannot
reference labels that are not defined within the procedure or
function.
76 Scope Rules

Chapter 3 Variables, Arrays, Procedures, and Functions

Calling DLL Functions

In a CASL macro, you can call functions located in external
libraries. These libraries are referred to as Dynamic Link
Libraries (DLLs) in the Windows environment. This provides
access to Windows’ kernel, user, or GDI functions, third-party
libraries, and in-house libraries. The advantage of using external
libraries is to provide capabilities not found in CASL and to
improve the efficiency of critical routines.
Calling DLL Functions 77

An external library is a collection of functions that exist in a
separate file. That file is loaded by the operating system only
when a program (or macro in our case) calls one of the functions
contained in it. This reduces the size of programs, since many
programs can call the same library, and allows new functionality
to be added to CASL.

Declaring DLL
Functions

The functions in your CASL macro that call DLL functions are
declared in a manner similar to CASL forward declarations. Once
declared, the functions can be used exactly like other functions in
your macro. Use the following syntax to declare the functions:

Function with a return value:

func name [(arglist)] returns type ...
library filename [name (string)]

Procedure without a return value:

proc name [takes arglist] library filename ...
[name (string)]

The name can be the real name of the function or a name
preferred by the user. In the latter case, the optional name
parameter at the end of the declaration must provide the real
function name.

The following examples illustrate library declarations:

func IsCharAlpha(char x) returns boolean ...
library "user.exe"

Note: The following information is intended for experienced
Windows programmers.

Chapter 3 Variables, Arrays, Procedures, and Functions

USER.EXE is one of the DLLs that comprise the Windows core.

func myFunc(integer x, real y) returns integer ...
library "mylib.dll" name "FredsFunc"

func countLetters(string x) returns integer ...
library "stringlib.dll"

proc do_something takes integer x, byte y,
string z ...
78 Calling DLL Functions

library "something.dll"

Parameter and
Return Values

The following CASL data types can be passed as parameters to
DLL functions: integer , real , string , boolean , byte , and
word .

The list is the same for return values with the exception of real ,
which is not returned.

A DLL function is written in a language such as C/C++. You need
to match the CASL data type to the data type expected by the
function being called.

Note: Since the functions are only declared in the macro, the
parameter names used in the declarations (x , y , and z) are
place holders and can be any valid variable name. Make sure
you include the file name extension .DLL. Also, a path is
required if the DLL is not located in any directory that is
searched automatically by Windows.

Chapter 3 Variables, Arrays, Procedures, and Functions

Use the following table to select the data type you need.

C or C++ Data Types CASL’s Corresponding Type

long (32 bit data) integer

unsigned long integer

int (16 bit data) word

short word
Calling DLL Functions 79

CASL integers are 32-bit signed values, CASL words and bytes
are 16- and 8-bit unsigned values respectively. Keep this in mind
when assigning values to variables. Where a function takes or
returns an 8- or 16-bit value that is designated as true or false,
you can define it as boolean and use the true or false keywords
built into CASL.

Sometimes functions use the pointer as a method of returning
data over and above the return value. Since the function has the
location of the string, it can write data to that location. For
example, a function that converts text to uppercase might simply
do the job “in place,” so that the string you passed as a parameter
is also the string that contains the uppercase text. In this case, a
string variable must be used so that you can reference the string
later.

You need to make sure that data returned in the string does not
exceed the length of the original string. For example, you may

unsigned int or short word

char (numeric value) \word

char (single letter) char

unsigned char byte

float not supported

double real

char * (pointer to char) string

Note: CASL does not pass the string itself to a function.
Instead the location (address) of the string is passed. In C, this
is referred to as a pointer. In CASL, you simply use a string
variable as a parameter or place the desired text in quotes.
CASL handles the job of passing the correct information.

Chapter 3 Variables, Arrays, Procedures, and Functions

have a function named path that takes the name of a file as a
parameter and returns, in the same string, the full path
specification for that file, as follows:

string file_str
file_str = "myfile.txt"
path (file_str)

In this case, you will get a truncated path name if it is longer than
the string. The function assumes it has enough space and will
write beyond the end of your original string. This can corrupt your
80 Calling DLL Functions

data or lock up your computer. The following macro shows the
correct approach, making the string long enough to accommodate
the longest string anticipated (in the case of DOS path names, 128
characters).

string file_str
file_str = "myfile.txt" -- Add extra blanks
path (file_str)
strip (file_str, " ", 1) -- Remove excess blanks

Non-Supported
Parameters and
Return Values

Functions written in languages such as C can accept a wide range
of parameters not supported by CASL DLL calls, such as arrays
and structures. If you want to access such functions (for example,
in third-party libraries), you must write intermediate libraries
that translate the data being passed or returned.

Writing Windows
DLLs

Before you write DLLs, you should have experience with a
language such as C and have access to a compiler that supports
Windows programming.

To access functions in a DLL, a DEF file must export each of the
callable functions in its EXPORTS section. If you are not already
familiar with writing DLLs, you should refer to the books
available that provide detailed explanations of how to program
Windows applications and DLLs.

Note: For string handling, remember that you are only
returning the address of the string. This means that the
address must remain valid after the function ends. Do not
return a local string (one on the stack). Declare any string to be
returned as static or allocate it from heap memory. However, if
any memory is allocated on the heap, whether for strings or for
any other data, it must be freed at some point before the macro
terminates. Therefore, you must free the memory from the
function that allocates it or provide another function to free it.

Chapter 3 Variables, Arrays, Procedures, and Functions

As you write DLLs to interface to Windows, you might need access
to Accessory Manager parent and child (session) window handles.
To access these handles, declare the following at the top of the
macro:

/*Handle to Accessory Manager parent window */
systemvar integer _hWndFrame

/* Handle to script's child window */
sessionvar integer _hWndSession
Calling DLL Functions 81

After the declaration, _hWndSession and _hWndFrame are used
in the same manner as system and session variables.

Interacting with the Host,
Users, and Other Macros 4
83

In This Chapter This chapter includes the following headings:

Interacting with the Host . 84

Communicating with a User . 87

Invoking Other Macros . 90

Exchanging Variables . 91

Trapping and Handling Errors . 92

Chapter 4 Interacting with the Host, Users, and Other Macros

Interacting with the Host

CASL provides a number of language elements you can use to
interact with a host. For example, the wait statement provides
basic data-handling functions, while the watch statement offers
more sophisticated methods for handling data.

Waiting for a Use the wait statement when you need to wait for a specific,
84 Interacting with the Host

Character String unique string of text, as in the following example:

wait for "What is your first name?"

Note that the string "What is your first name?" is enclosed
in quotation marks because it is a string constant.

The wait statement does not require a complete sentence as
shown in the previous example. If just the word "name?" is
unique at the time the macro executes the wait statement, you
can shorten the statement as follows:

wait for "name?"

You can have your wait statement wait for one of several
conditions to occur. For example, if you want to send a carriage
return when your macro receives either "more" or "press
enter" from the host, write the statement as follows:

wait for "more", "press enter" : reply

The default wait time for the wait statement is forever. You can
specify a specific time period for the macro to wait, as shown in the
following example.

reply -- Send CR
wait 2 seconds for "login:" -- Wait
if timeout then{

alert "Host not responding", ok
end

}

In this example, the macro waits two seconds for the host to send
the login: prompt. If a timeout occurs before the prompt
appears, the user is alerted and the macro ends.

By default, the wait statement is not case- or space-sensitive. If
your macro requires an exact match, you must use the statement’s
case or space modifiers (or both). There are several other

Chapter 4 Interacting with the Host, Users, and Other Macros

conditions for which a wait statement can wait, including waiting
to receive a specific count of characters and waiting for the
connection to be quiet. For a complete list of wait conditions, refer
to “wait (statement)” on page 334.

Watching for
Conditions to
Occur

Use the watch...endwatch construct when you need to wait for
any one of several conditions to occur and then take an action
based on that condition, as shown in the following example:

watch for
Interacting with the Host 85

key 27, "$" : end
"more:" : wait 1 second : reply

endwatch

In this example, when the watch statement is encountered, the
macro pauses while waiting for one of the two conditions to take
place. The statement, or statements, to the right of the colon are
executed for whichever condition occurs first.

Note that watch...endwatch is not a looping construct. If you
want to repeat the watch...endwatch statements, enclose them
in a while...wend or a repeat...until construct. The
following example shows the while...wend construct:

while online
watch for

key 27, "$" : end
"more:" : wait 1 second : reply

endwatch
wend

This example is taken from a simple macro that automates
reading electronic mail on a host. The while...wend loop is
needed because the more: prompt will appear multiple times
during the reading process.

As specified by the first line of the watch construct in the previous
example, the macro ends if the user presses Esc (key 27). If more:
is found, the macro waits one second and then uses the reply
statement to send a carriage return to the host. If the dollar sign
($) appears, there is no more mail to read, and the macro ends.

Like the wait statement, the watch statement can watch for
several different kinds of conditions. For a complete list of the
conditions, refer to “watch...endwatch (statements)” on page 338.

Chapter 4 Interacting with the Host, Users, and Other Macros

Setting and
Testing Time
Limits

Use the timeout system variable to determine if the condition for
which you are waiting or watching has occurred within an
expected time frame. To use the timeout system variable, you
must set a time-out value for the wait or watch condition. Then
you can test the timeout system variable; it returns true if the
condition was not satisfied or false if it was satisfied.

For example, sometimes a user has to press Enter a number of
times before the host recognizes the response. You can set up a
simple routine to handle this situation:
86 Interacting with the Host

repeat
reply
wait 1 second for "Login:"

until not timeout
reply userid
end

This example shows how to use the repeat...until construct to
execute the same statements one or more times. When the
repeat...until condition is satisfied, macro execution
continues with the statement following the repeat...until
construct.

In the example, the macro uses the reply statement without an
argument to send only a carriage return character to the host.
Then it waits one second for the string "Login:" to arrive. If the
string does not arrive within the one-second time frame (timeout
is true), the macro repeats the statements in the
repeat...until construct. If the string arrives within the time
frame specified (timeout is false), the macro sends the contents
of the system variable userid to the host and ends. The userid
variable must be defined in the session profile for the session
running this macro.

Sending a Reply
to the Host

Many of the examples in this section use the reply statement to
respond to the host. The reply statement lets you send a string of
text to the host. If you use the statement without a text string
argument, only a carriage return is sent. You can concatenate
more than one string in a reply statement by using the plus
symbol (+) to join the strings, as shown in the following example:

reply userid + " " + password

Chapter 4 Interacting with the Host, Users, and Other Macros

Communicating with a User

In addition to interacting with a host, your macros may also have
to communicate with a user. CASL has several language elements
specifically designed for interfacing with a user: print , message ,
input , alert , and dialogbox...enddialog .

Displaying Use the print statement to display information in the session
Communicating with a User 87

Information window. You can display constants, variables, or a combination of
the two. You can also control such display characteristics as
attributes for bright or flashing characters and for color. Note that
attributes will work only if the terminal type, which controls the
interface between the macro and a terminal, understands what
the attributes mean.

The following are examples of simple print statements:

print "Greetings."

print time(cursecond)

print "The time is " ; time(cursecond)

print "This is all on the ";

print "same line."

The first example displays the phrase Greetings . The second and
third examples display the time. Note that the print statement
in the third example contains a semicolon. The semicolon causes
the text string and the time to be displayed with no space between
them.

The fourth example shows how to use the semicolon at the end of a
print statement to suppress a carriage return. In this example,
both print statements display text strings that appear on the
same line of the screen.

You create a more complex print statement when you display
words with an attribute, as shown in the following example:

print "This is a ";bright;"bright " ;...
normal;"idea!"

In this example, the bright option is used to display the word
bright using the bright attribute. When an attribute is set, it

Chapter 4 Interacting with the Host, Users, and Other Macros

remains in effect until another attribute is specified. In the
example, the normal option resets the attribute to normal.

A special character, ^G , causes the PC to beep when the print
statement is executed. The reason for this is that the print
statement can print ASCII control characters. This attribute is
shown in the following example:

print "Beep!^G"

The ^G in the example is the ASCII decimal 07 or Bell. For a list of
88 Communicating with a User

other ASCII control characters, refer to “ASCII Control Codes” on
page 40.

Requesting
Information

Use the input statement to obtain information from the user. The
input statement suspends the macro while waiting for the user to
enter data. When the user presses Enter, input knows that data
entry is complete. The data entered is stored in a specified
variable.

The following example shows how to use the input statement:

string user_name

print "Please enter your name: " ;
input user_name
print "Hello, "; user_name

In the previous example, user_name is declared as a string
variable. Since the input statement does not display a prompt,
the print statement requests the user to enter a name. After the
user enters a name and presses Enter, the entry is stored in the
string variable user_name . This variable is then used in the last
print statement to display the name that was entered.

The alert and dialogbox...enddialog statements let you
create dialog boxes for text input. The alert statement displays a
simple dialog box in which the user can enter text or respond by
clicking a button. The dialogbox...enddialog construct lets
you create more sophisticated dialog boxes, which can contain
buttons, text, edit boxes, radio buttons, check boxes, list boxes,
and so on.

The following is an example of an alert statement that displays a
message:

alert "File not found", "Try again", cancel, ok

Chapter 4 Interacting with the Host, Users, and Other Macros

In this example, the message File not found appears in the
dialog box. The user can click either Try Again , Cancel , or OK to
exit the dialog box.

For additional information about the print , message , input ,
alert , and dialogbox...enddialog statements, refer to
Chapter 6, “CASL Language.”
Communicating with a User 89

Chapter 4 Interacting with the Host, Users, and Other Macros

Invoking Other Macros

With CASL, you can invoke, or start, another macro from your
macro. Depending on your programming requirements, your
macro can terminate and pass control (chain) to the other macro;
or your macro can use the do statement to call the other macro as
a child macro.
90 Invoking Other Macros

Chaining to
Another Macro

To pass control to another macro without returning control to your
macro, use the chain statement. For example, to pass control to a
macro called SCRIPT2, write the chain statement as follows:

chain " SCRIPT2"

Calling Another
Macro

To call another macro as a child macro, use the do statement.
When you use this statement, the child macro returns control to
the parent macro when the child macro has completed. The
following is an example of the do statement:

do "cvtsrc"

Passing
Arguments

To pass arguments to the invoked macro, add the arguments to
the chain or do statement after the name of the macro. In the
following chain statement, the argument CSERVE is passed to
SCRIPT2:

chain "SCRIPT2 CSERVE"

To retrieve the arguments in the invoked macro, use the arg
function. Use arg with no arguments (or an argument of 0) to
retrieve the arguments as one long string. Use arg(1) through
arg(n) to retrieve each individual argument.

Note: Any statements that follow the chain statement are not
executed.

Chapter 4 Interacting with the Host, Users, and Other Macros

Exchanging Variables

If you use the do statement to invoke another macro, the macros
can exchange variable information. To pass a variable between
macros, declare the variable as public in the invoking macro and
as external in the invoked macro.

In the following example, the invoking macro, SCRIPT1, declares
the string myname as public , invokes SCRIPT2, prints a message
Exchanging Variables 91

when SCRIPT2 returns control, and ends.

public string myname
do "SCRIPT2"
print "My name is " + myname
end

In the next example, SCRIPT2, which was invoked by SCRIPT1,
declares the string variable myname as external , assigns a value
to myname, and returns control to SCRIPT1. Note that the value
SCRIPT2 assigns to myname is what SCRIPT1 prints when it
regains control (see the first example).

external string myname
myname = "Bert"
end

The message that SCRIPT1 displays on the screen is as follows:

My name is Bert

Note: You cannot exchange data with another macro if you use
the chain statement to invoke the macro. Also, if you are using
public and external variables, you must declare the variable
as public in the parent macro.

Chapter 4 Interacting with the Host, Users, and Other Macros

Trapping and Handling Errors

Error trapping makes a macro capable of handling almost any
situation, and it is essential in macros that are interfacing with
other resources. With error trapping, you can control many
different situations. For example, you can set up recovery
procedures if a file transfer or file input/output operation fails.
92 Trapping and Handling Errors

Enabling Error
Trapping

Use the trap compiler directive to enable and disable error
trapping in your macro. The default setting for this directive is
trap off . If trap is off , a dialog box appears automatically and
the macro ends whenever a fatal error occurs. If trap is on , the
dialog box does not appear, and the macro continues running.

In general, it is best to turn trapping on just prior to a statement
that may generate an error and then turn it off after testing for
the error. Be sure to check the error-trapping function error , the
system variables errclass , and errno just after the statement
executes. Otherwise, you may lose the error information if a
subsequent statement resets the error function and variables.

Testing if an Error
Occurred

Use the error function to test if an error occurred. This function
returns true if an error occurs or false if no error occurs. When
you test the function, its value is reset to 0. To continue to trap
errors throughout the execution of the macro, you must test (reset)
the error function each time an error occurs.

Checking the
Type of Error

Use the errclass system variable to check the type of error that
occurred. This variable contains 0 if no error occurs. If an error
does occur, it contains an integer value that reflects the type of
error. This variable is not reset when you check its value; the
value remains unchanged until another error occurs. For
information on the errclass values you may encounter, refer to
“Classes of Error Message” on page 370.

Checking the Error
Number

Use the errno system variable to check the number of the error
that occurred. The error number is associated with the type of
error that is returned by the errclass system variable. For
example, the return code 13-08 represents the errclass value 13
and the errno value 08. This type of error is a file I/O read error.
For additional information, refer to Appendix A, “Error Messages.”

Chapter 4 Interacting with the Host, Users, and Other Macros

If no error occurs, the errno variable contains 0. This variable is
not reset when you check its value; the value remains unchanged
until a different error occurs.

When setting up your macro to trap and handle errors, follow
these guidelines in the order shown:

■ Set trap on right before a statement that could generate an
error condition (for example, a statement that sends files to the
host). Note that setting trap on suppresses error message
Trapping and Handling Errors 93

display.

■ Set trap off immediately after the statement executes.

■ Check the error function after setting trap off .

■ If an error occurs (error is true), check the errclass and
errno system variables to determine the error type and
number.

The following sample macro illustrates how to use CASL’s error
trapping capabilities. The script’s purpose is to send a file to the
host. If the file transfer is successful, the macro ends. If for any
reason, the file transfer does not complete successfully, the macro
sounds an alarm and prints an error message.

/* Macro to send a file. */

string fname
fname = "*.exe"

trap on -- turn on error trapping
send fname -- send the file
trap off -- turn off error trapping
if error then
{

alarm
print "Send failed. Error: "; + ...

errclass; "-"; errno
}
end

This macro is very simple. Ideally, your error-handling should be
more comprehensive. For example, if the macro is unattended,
error handling should either attempt to send the file again or hang
up and retry later, depending on the error type. If the macro is
attended, error handling might print a message that informs the

Chapter 4 Interacting with the Host, Users, and Other Macros

user of the error and instructs the user to correct the problem and
retry the file transfer.

It is not always necessary to determine the values in errclass
and errno ; sometimes it is sufficient just to know that an error
occurred (by checking error). How you use error trapping and to
what extent depends on what your macro needs to accomplish.

Refer to Chapter 6, “CASL Language,” for more information on the
trap compiler directive, the error function, and the errclass
94 Trapping and Handling Errors

and errno system variables.

Functional Purpose of
CASL Elements 5
95

In This Chapter This chapter groups CASL macro elements by function and
includes the following headings:

Overview . 96

Date and Time Operations . 97

Error Control . 98

File Input/Output Operations . 99

Host Interaction . 101

Macro Management . 102

Mathematical Operations . 103

Printer Control . 104

Program Flow Control . 105

Session Management . 107

String Operations . 109

Type Conversion Operations . 111

Window Control . 112

Miscellaneous Elements . 114

Chapter 5 Functional Purpose of CASL Elements

Overview

This chapter contains a quick reference to all of the CASL
elements. Detailed descriptions of the elements and examples
showing how to use them are covered in Chapter 6, “CASL
Language.”

In this chapter, CASL elements are grouped according to their
functional purpose, such as session management, program flow
96 Overview

control, file input/output operations, and so on. Some elements
might appear more than once if they have more than one purpose.
A brief description of the element is also included. Each
description ends with an element identifier, as follows:

Identifier Macro Element Group

F Function

S Statement

V Variable (system and module)

C Constant

D Declaration (procedure and function)

CD Compiler directive

Chapter 5 Functional Purpose of CASL Elements

Date and Time Operations

The following CASL elements determine the date and time:

Element Description

curday Returns the current day of the month. (F)

curhour Returns the current hour. (F)
Date and Time Operations 97

curminute Returns the current minute. (F)

curmonth Returns the number of the current month. (F)

cursecond Returns the current second. (F)

curyear Returns the current year. (F)

date Returns today’s date as a string. (F)

hms Returns a string in hours, minutes, and seconds format.
(F)

secno Returns the number of seconds since midnight. (F)

time Returns the current time as a string. (F)

weekday Returns the number of the day of the week (0-6). (F)

Chapter 5 Functional Purpose of CASL Elements

Error Control

The following CASL elements control error conditions:

Element Description

errclass Indicates the class of the last error. (V)

errno Indicates the type of the last error. (V)
98 Error Control

error Indicates the occurrence of an error. (F)

trap Turns error trapping on and off. (CD)

Chapter 5 Functional Purpose of CASL Elements

File Input/Output Operations

The following CASL elements provide file input and output
capabilities:

Element Description

backups Determines what is done with duplicate files after a file
transfer. (V)
File Input/Output Operations 99

chdir Changes to a different disk directory. (S)

close Closes a disk file. (S)

copy Copies a file or group of files. (S)

curdir Returns the current disk directory. (F)

curdrive Returns the current disk drive. (F)

definput Contains the default input file number. (V)

defoutput Contains the default output file number. (V)

delete Deletes disk files. (S)

drive Sets the current disk drive. (S)

eof Returns true if end-of-file is reached. (F)

eol Returns true if end-of-line is reached. (F)

exists Returns true if a file exists. (F)

filefind Locates files in the directory. (F)

filesize Returns the file size. (F)

fncheck Checks the validity of a file name. (F)

fnstrip Returns specified portions of a file name. (F)

get Reads characters from a random access file. (S)

loc Returns a file pointer position. (F)

mkdir Creates a new directory. (S)

open Opens a disk file. (S)

put Writes records to a random disk file. (S)

read Reads text fields from a file. (S)

Chapter 5 Functional Purpose of CASL Elements

read line Reads text lines from a file. (S)

receive Initiates a file transfer. (S)

rename Renames disk files. (S)

rmdir Removes a disk directory. (S)

seek Moves a file pointer to a specified position. (S)

Element Description
100 File Input/Output Operations

send Initiates a file transfer to a remote computer. (S)

write Writes text fields to a file. (S)

write line Writes text lines to a file. (S)

Chapter 5 Functional Purpose of CASL Elements

Host Interaction

The following CASL elements let you interact with a host:

Element Description

display Controls the display of incoming characters. (V)

match Specifies the string found by the last wait or watch
statement. (V)
Host Interaction 101

nextchar Returns the next character from a
communications device. (F)

nextline Returns the next line, delimited by a carriage
return, from the communications device. (F/S)

online Returns true if a session is online. (F)

press Sends a series of keystrokes to the terminal
module. (S)

reply Sends a string of text to the communications
device. (S)

sendbreak Sets the length of a break signal. (S)

track Watches for string patterns or keystrokes while
online. (S)

wait Waits for a string of text from the communications
device or for a keystroke. (S)

watch...endwatch Watches for one of several conditions to occur.
(S)

Chapter 5 Functional Purpose of CASL Elements

Macro Management

The following CASL elements manage CASL macros:

Element Description

chain Passes control to another macro. (S)

compile Compiles a macro. (S)
102 Macro Management

do Starts another macro and waits for it to return
control. (S)

genlabels Specifies whether to include or exclude label
information in a compiled macro. (CD)

genlines Specifies whether to include or exclude line
information in a compiled macro. (CD)

include Includes an external file in a compiled macro. (CD)

inscript Checks for labels in a macro. (F)

quit Closes a session window. (S)

scriptdesc Defines a macro description. (CD)

startup Contains the name of the macro to run at start-up.
(V)

terminate Terminates Accessory Manager. (S)

trace Turns tracing on and off. (S)

Chapter 5 Functional Purpose of CASL Elements

Mathematical Operations

The following CASL elements perform mathematical operations:

Element Description

abs Returns the absolute value of a number. (F)

cksum Returns the checksum of a string. (F)
Mathematical Operations 103

crc Returns the CRC of a string. (F)

intval Returns the integer value of a string. (F)

max Returns the larger of two values. (F)

min Returns the smaller of two values. (F)

mkint Converts numeric strings to integers. (F)

val Returns the real (floating point) value of a string. (F)

Chapter 5 Functional Purpose of CASL Elements

Printer Control

The following CASL elements control how data is printed:

Element Description

capture Sends a continuous stream of data from the host to a file. (S)

footer Specifies the footer used when printing. (V)
104 Printer Control

grab Sends the contents of the session window to a file. (S)

header Specifies the header used when printing. (V)

lprint Sends a string of text to the printer. (S)

printer Sends a continuous stream of data from the host to a printer.
(V)

Chapter 5 Functional Purpose of CASL Elements

Program Flow Control

The following CASL elements provide program flow control:

Element Description

case...endcase Performs statements based on the value of a
specified expression. (S)

chain Passes control to another macro. (S)
Program Flow Control 105

do Starts another macro and waits until it returns
control. (S)

end Ends a macro. (S)

exit Exits a procedure. (S)

for...next Performs a series of statements a specified
number of times, usually while changing the value
of a variable. (S)

freetrack Returns the value of the lowest unused track
number for the current session. (F)

func...endfunc A function declaration. (D)

gosub...return Transfers program control to a subroutine. (S)

goto Transfers program control to a label or expression.
(S)

halt Stops a macro and its related parent and child
macros. (S)

if...then...else Controls program flow based on the value of an
expression. (S)

label Denotes a named reference point in a macro. (S)

perform Calls a procedure. (S)

proc...endproc A procedure declaration. (D)

quit Closes a session window. (S)

repeat...until Repeats a statement or series of statements until a
specified condition is true. (S)

return Returns a value from a function. (S)

terminate Terminates Accessory Manager. (S)

Chapter 5 Functional Purpose of CASL Elements

timeout Returns the status of the most recent wait or watch
statement. (V)

trace Turns tracing on and off. (S)

track Watches for string patterns or keystrokes while
online. (S)

wait Waits for a string of text from the communications

Element Description
106 Program Flow Control

device or for a keystroke. (S)

watch...endwatch Watches for one of several conditions to occur. (S)

while...wend Performs a statement or group of statements as
long as a specified condition is true. (S)

Chapter 5 Functional Purpose of CASL Elements

Session Management

The following CASL elements manage sessions:

Element Description

activate Activates Accessory Manager by moving the focus
to it. (S)

activatesession Makes the specified session active. (S)
Session Management 107

assume Controls the way the CASL compiler handles
module variables for the Connection, Terminal, and
File Transfer tools. (S)

bye Disconnects the current session. (S)

description Describes a session. (V)

device Specifies a connection device. (V)

go Initiates a connection to a communications device.
(S)

keys Reads or sets the keyboard map to use (V)

name Contains the name of the current session. (F)

netid Contains the network identifier for a session. (V)

new Creates or opens a session. (S)

ontime Indicates how long a session has been online. (F)

password Contains the password for the current session. (V)

protocol Specifies a file transfer protocol. (V)

quit Closes a session window. (S)

run Starts another application. (S)

save Saves the current session parameters. (S)

script Specifies the name of the macro file to use for the
current session. (V)

session Returns the session number of the current session.
(F)

sessname Returns the name of the session identified by a
specified session number. (F)

Chapter 5 Functional Purpose of CASL Elements

sessno Returns the session number of a specified session.
(F)

startup Contains the name of the macro to run at start-up.
(V)

terminal Specifies the terminal emulation to use. (V)

terminate Terminates Accessory Manager. (S)

Element Description
108 Session Management

userid Contains the user account name for a session. (V)

Chapter 5 Functional Purpose of CASL Elements

String Operations

The following CASL elements perform string operations:

Element Description

arg Returns command line arguments. (F)

bitstrip Removes bits from strings. (F)
String Operations 109

count Returns the number of occurrences of one string within
another string. (F)

dehex Converts ASCII strings in hexadecimal format to binary.
(F)

delete Returns a string with characters removed. (F)

destore Converts strings of printable ASCII characters back to
embedded control-character form. (F)

detext Converts 7-bit ASCII character strings to binary. (F)

enhex Converts a binary string to a string of ASCII characters in
hexadecimal format. (F)

enstore Converts strings with embedded control characters into
strings of printable ASCII characters. (F)

entext Converts a string of binary data to a string of 7-bit ASCII
characters. (F)

hex Converts an integer to a hexadecimal string. (F)

hms Returns a string in hours, minutes, and seconds format.
(F)

inject Changes some characters in a string. (F)

insert Adds characters to a string. (F)

instr Looks for a substring in a string. (F)

intval Returns the integer value of a string. (F)

left Returns the left portion of a string. (F)

length Returns the length of a string. (F)

lowcase Changes a string to all lowercase characters. (F)

mid Returns a middle portion of a string. (F)

mkstr Converts an integer to a string. (F)

Chapter 5 Functional Purpose of CASL Elements

null Returns true if a string has zero length. (F)

pack Removes duplicate characters from a string. (F)

pad Adds extra characters to a string. (F)

quote Returns a string enclosed in quotation marks. (F)

right Returns the right portion of a string. (F)

Element Description
110 String Operations

slice Breaks out portions of a string. (F)

str Converts a number to string format. (F)

strip Returns a string with certain characters removed. (F)

subst Returns a string with certain characters changed. (F)

upcase Changes a string to all uppercase characters. (F)

val Returns the real (floating point) value of a string. (F)

winstring Reads a string from a window. (F)

Chapter 5 Functional Purpose of CASL Elements

Type Conversion Operations

The following CASL elements convert data from one type to
another:

Element Description

asc Returns the ASCII value of a string. (F)

binary Converts a string to a binary number. (F)
Type Conversion Operations 111

bitstrip Strips bits from strings. (F)

chr Returns a single-character string for an ASCII value. (F)

class Returns the class type of a single-character string. (F)

dehex Converts ASCII strings in hexadecimal format to binary.
(F)

detext Converts 7-bit ASCII character strings to binary. (F)

enhex Converts a binary string to a string of ASCII characters in
hexadecimal format. (F)

entext Converts a string of binary data to a string of 7-bit ASCII
characters. (F)

hex Converts an integer to a hexadecimal string. (F)

intval Returns the integer value of a string. (F)

mkint Converts numeric strings to integers. (F)

mkstr Converts an integer to a string. (F)

octal Converts a decimal integer to an octal integer. (F)

str Converts a number to string format. (F)

val Returns the real (floating point) value of a string. (F)

Chapter 5 Functional Purpose of CASL Elements

Window Control

The following CASL elements control the window size and how
data is input and displayed in a window:

Element Description

activate Activates Accessory Manager window by
moving the focus to it. (S)
112 Window Control

alert Creates simple dialog boxes for display on
the screen. (S)

choice Contains the value of the button that
dismissed a dialog box. (V)

clear Clears a window. (S)

dialogbox...enddialog Creates more complex dialog boxes for
display on the screen. (S)

hide Reduces a session window to an icon. (S)

hideallquickpads Hides all of the QuickPads™. (S)

hidequickpad Hides a QuickPad. (S)

input Accepts input from the screen. (S)

loadquickpad Activates a QuickPad. (S)

maximize Enlarges the Accessory Manager window
to full-screen size. (S)

minimize Reduces the Accessory Manager window
to an icon. (S)

move Moves the Accessory Manager window to
a new location on the screen. (S)

passchar Specifes the character to display in a text
box on a dialog box created using
dialogbox...enddialog and the
secret option. (V)

print Displays information on the screen. (S)

restore Restores the Accessory Manager window
to its original size. (S)

show Redisplays a session window. (S)

showquickpad Displays a QuickPad. (S)

Chapter 5 Functional Purpose of CASL Elements

size Changes the size of a window. (S)

tabwidth Specifies the number of spaces a tab
character moves the cursor. (V)

unloadallquickpads Closes all of the QuickPads. (S)

unloadquickpad Closes a QuickPad. (S)

Element Description
Window Control 113

winchar Reads a character from a window. (F)

winsizex Returns the horizontal size of a window. (F)

winsizey Returns the vertical size of a window. (F)

winstring Reads a character string from a window.
(F)

xpos Returns the horizontal location of the
cursor. (F)

ypos Returns the vertical location of the cursor.
(F)

zoom Enlarges a session window to the size of
the Accessory Manager application
window. (S)

Chapter 5 Functional Purpose of CASL Elements

Miscellaneous Elements

The following are CASL elements that don’t fall into the preceding
categories:

Element Description

alarm Sounds an alarm at the terminal. (S)

busycursor Displays the cursor as an hourglass. (S)
114 Miscellaneous Elements

environ Returns environment variables. (F)

false Sets a variable to logical false. (C)

freemem Returns the amount of available memory. (F)

inkey Returns the value of a keystroke. (F)

off Sets an item to logical false. (C)

on Sets an item to logical true. (C)

pop Discards a return address from the stack. (S)

review Defines the size of the review buffer. (V)

stroke Waits for the next keystroke from the keyboard. (F)

systime Indicates how long the current session has been active.
(F)

true Sets a variable to logical true. (C)

version Returns the Accessory Manager version number. (F)

winversion Returns the Windows version number. (F)

CASL Language 6
115

In This Chapter This chapter provides detailed information about all CASL
elements, including the syntax of each element and examples of
how the element can be used.

Chapter 6 CASL Language

How CASL Elements Are Documented

In this chapter, all CASL elements are listed in alphabetical order.
(For a summary of CASL elements grouped by function, refer to
Chapter 5, “Functional Purpose of CASL Elements.”)

The name of each CASL element appears as a heading at the top
of the page. The type of element it is (such as function, statement,
system variable, and so on) appears in parentheses.
116 How CASL Elements Are Documented

Immediately below the CASL element name is a brief description
of the element and how it should be used, followed by these
sections:

■ Format—the syntax for the element

■ Comments—additional descriptive information about the
element

■ Example—an example of how the element can be used

■ See Also—a list of other related elements

Note: For a description of the notation used in the format,
refer to Chapter 2, “Understanding the Basics of CASL.”

Chapter 6 CASL Language

abs (function)

Use abs to get the absolute value of a number.

Format x = abs(expression)

Comments expression must be a real or signed integer. The result returned
by the abs function is always a positive number.
abs (function) 117

Example 1 positive_number = abs(negative_number)

In this example, abs assigns the absolute value of the contents of
negative_number to the variable called positive_number .

Example 2 if abs(net_worth) > 5 then alarm

In this example, an alarm sounds if the absolute value of the
net_worth variable is greater than five.

See Also cksum, crc, intval, max, min, mkint, val

Chapter 6 CASL Language

activate (statement)

Use activate to make the Accessory Manager application
window the active window.

Format activate

Example activate
118 activate (statement)

Chapter 6 CASL Language

activatesession (statement)

Use activatesession to make the specified session active.

Format activatesession sessionid

Comments When you use this statement, the session identified by
sessionid becomes active.
activatesession (statement) 119

Example 1 activatesession sessA

In this example, session A becomes active.

Example 2 activatesession sessno("ABBS")

In this example, activatesession activates the session named
ABBS whose session number is returned by the sessno function.

See Also activate

Chapter 6 CASL Language

alarm (statement)

Use alarm to make the PC sound an alarm.

Format alarm [integer]

Comments This function is useful for getting the user’s attention.
120 alarm (statement)

integer can be any integer between 0 and 5; values outside of
this range are treated as 0. Zero is the default value used when no
argument is specified.

The sounds produced by integer vary, depending on the .WAV
files specified in the Windows Registry in
HKEY_CURRENT_USER\AppEvents\Schemes\Apps\.Default.
The following table shows possible integer values and their
corresponding sounds or registry keys:

If the PC has no sound card, all the alarm values result in a beep
through the speaker.

Example 1 alarm 1

In this example, the PC makes the chord sound.

Integer Value Sound Description

0 Short beep

1 SystemAsterisk\.Current

2 SystemExclamation\.Current

3 SystemHand\.Current

4 SystemQuestion\.Current

5 .Default\.Current

Chapter 6 CASL Language

Example 2 if not exists("BBS.DAT") then alarm

In this example, the exists function is used to determine the
existence of a file. If the file does not exist, the macro sounds an
alarm.

Example 3 for i = 0 to 12
print "alarm "; i
alarm i
wait 1 second
alarm (statement) 121

next

In this example, the terminal sounds all of the alarms, with a
pause of one second between each alarm.

Chapter 6 CASL Language

alert (statement)

Use alert to display a dialog box that allows choices to be made.

Format alert string , button1 [, button2 ...
[, button3 [, button4]]] [, str_var]

Comments The alert statement displays a dialog box that prompts the user
122 alert (statement)

for input, or notifies the user of some important occurrence.

A text message defined by string is centered in the dialog box.

The defined buttons are displayed from left to right along the
bottom of the dialog box. Forbutton1 through button4 , you can
use either the text that you want to display on the button or the
predefined keywords ok and cancel .

If you use text for the buttons, enclose the text in quotation marks.
The maximum length of a button name is ten characters.

If you use the predefined keywords ok and cancel , you do not
need to enclose these keywords in quotation marks. If you use the
ok keyword, alert creates an OK button in the dialog box and
associates Enter with this button. If you use the cancel keyword,
alert creates a Cancel button in the dialog box and associates
Esc with this button.

str_var is a previously defined string variable that causes alert
to display an edit box in which the user can enter text. The edit
box appears between the text message string and the buttons in
the dialog box.

You can examine the variables that display or store user
information after the alert statement has executed. The system
variable, choice , contains a value between one and four that
corresponds to the button used to exit the dialog box. For example,
if button1 is chosen, choice is set to integer 1. Note that
str_var is not updated if the Cancel button is used to exit the
dialog box.

Accessory Manager normally makes the first letter of the button
name an accelerator. You can define a different accelerator by
placing an ampersand (&) to the left of the desired letter. If you
use variables for the button names, make sure the OK and Cancel

Chapter 6 CASL Language

buttons are last; if the last item is a variable, it is used for a text
box.

Example 1 string username

alert "Please enter your name:", ok, username
alert "You entered: " + username, ok

In this example, the macro displays a dialog box that prompts the
user to enter a name. The name is stored in the variable
alert (statement) 123

username . A second dialog box displays the contents of
username .

Example 2 if not exists(filename) then
{
 alert "File not found", "Try again", ok, cancel
 if choice = 1 then goto get_fname
}

In this example, the macro displays a dialog box that tells the user
an invalid file name has been entered. If the user clicks the Try
Again button, the macro branches to its get_fname label.

See Also dialogbox...enddialog

Chapter 6 CASL Language

arg (function)

Use arg to check the command-line argument(s) at macro
invocation.

Format x$ = arg[(integer)]

Comments arg with no arguments (or an argument of 0) returns all of the
124 arg (function)

arguments that follow the name of a macro in the chain or do
statement. For session start-up macros, it can also return
everything that was typed in the Arguments text box on the CASL
Macro tab on the Session Preferences dialog box, which is accessed
from Accessory Manager’s Options menu.

arg(1) through arg(n) return the individual elements of the
argument, as separated by commas.

Example 1 script1.xws
do "script2", "barkley"

script2.xws:
fname = arg(1)
if arg(1) = "barkley" then ...

In this example, the first macro uses the do statement with the
argument barkley to start the second macro as a child macro.
The second macro assigns the value in arg(1) to the user variable
fname . Then it tests whether the first argument is barkley .

Example 2 menu.xws
do "LOGIN", "myuserid", "mypassword"

login.xws
reply arg(1)
wait for "password:"
reply arg(2)

In this example, the do statement is used to run the macro file
LOGIN. LOGIN reads its arguments and sends them to the host
with the reply statement.

See Also chain, do

Chapter 6 CASL Language

asc (function)

Use asc to convert the first character of a string to its
corresponding ASCII value.

Format x = asc(string)

Comments string can be a string constant or expression of any length.
asc (function) 125

When the statement is executed, x contains the ASCII value of the
first character in the string. If string is not null, the value
returned is in the range of 0–255. If string is null (has no
length), asc returns -1.

Example 1 sixty_five = asc("A")

In this example, asc returns the ASCII value of the character A in
the variable sixty_five .

Example 2 seventy = asc("For pity's sake")

In this example, asc returns the value of the character F (which is
the first character of the string, "For pity's sake") in the
variable seventy .

Example 3 x = asc(mid(thestring, 2, 1))

In this example, asc converts the second character of thestring
and returns the result in x.

See Also binary

Chapter 6 CASL Language

assume (statement)

Use assume to specify which connection, terminal, or file transfer
tool is being used by the session.

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
126 assume (statement)

Format assume tool " filename " ... [, module " filename "]

Comments Before you can specify any configuration settings for a connection,
terminal, or file transfer tool, you must use the assume statement
to indicate which tool is loaded.

tool can be either device (for the connection tool), terminal
(for the terminal tool) or protocol (for the file transfer tool).

filename is the name of the tool (it must be enclosed in quotation
marks). For the connection tool, the only valid file name is
ICSTOOL. For valid terminal tool names, refer to “terminal
(system variable)” on page 316. For valid file transfer tool names,
refer to “protocol (system variable)” on page 279.

For more information about connection, terminal, and file transfer
tools, as well as a list of the configuration settings that you can
specify for each tool, refer to Chapter 7, “Connection, Terminal,
and File Transfer Tools.”

Example assume terminal "DCAT27"
CurShape = "Block"

In this example, the macro indicates that the session is an
InterCom session and configures the cursor shape to a block.

See Also device, protocol, terminal

Chapter 6 CASL Language

backups (module variable)

Use backups to determine whether to keep or discard duplicate
files during file transfers.

Format backups = option

Note: Some file transfer protocols do not use this variable.
backups (module variable) 127

Comments option is one of the following:

Example backups = off

In this example, backups is turned off.

Option Description

on If an existing file is received or edited, the old file is renamed with
a .BAK extension. If a backup file already exists, it is deleted.

off If an existing file is received or edited, the old copy of the file is
deleted.

Chapter 6 CASL Language

binary (function)

Use binary to convert an integer to a string, in binary format.

Format x$ = binary(integer)

Comments The binary function returns a binary string that represents the
value of integer . The string can be 8, 16, or 32 bytes long,
128 binary (function)

depending on the value of integer . Integer values and their
corresponding binary string lengths are shown in the following
table.

Example bin_num = binary(some_num)

In this example, the value of the variable some_num is converted
to its binary form, and the new value is stored in the variable
bin_num .

Integer Value Binary String Length

0–255 8

256–65,535 16

65,536–2,147,483,64 32

Chapter 6 CASL Language

bitstrip (function)

Use bitstrip to strip certain bits from a string.

Format x$ = bitstrip(string [, mask])

Comments bitstrip produces a new string that is the result of performing a
bitwise and of each character in string with mask. Refer to
bitstrip (function) 129

Chapter 2, “Understanding the Basics of CASL,” for an
explanation of the bitwise and operation.

mask is an integer bitmap value that defaults to 127 (0x7F), thus
stripping the high order bit from each byte in string . Some word
processors, such as WordStar®, set the high bit in certain
characters to indicate various conditions such as special
formatting. Stripping the high bit makes such files readable, but it
is not a replacement for a true conversion program. A mask of
0x5F (95 decimal) converts lowercase letters to uppercase, but it
also changes other characters.

Because mask is a bitmap, it must be in the range of 0–255
(decimal); values in the range of 0–127 are the most useful.

Example 1 readable_string = bitstrip(WordStar_line)

In this example, bitstrip strips the high-order bit of each byte of
the string WordStar_line and returns the result in
readable_string .

Example 2 reply bitstrip(WordStar_line)

In this example, bitstrip strips the high-order bit of each byte of
the string WordStar_line , and the result is sent to the host with
the reply statement.

Example 3 all_upcase = bitstrip("abc", 0x5F)

In this example, the letters abc are converted to ABC.

See Also lowcase, upcase

Chapter 6 CASL Language

busycursor (statement)

Use busycursor to display the cursor as an hourglass when you
expect a command to take a noticeable time interval to execute.

Format busycursor [on | off]

Comments This statement displays the cursor as an hourglass.
130 busycursor (statement)

Example busycursor on

wait 1 minute for "Login", "ID", "Password"
case match of

"Login": reply logon
"ID": reply userid
"Password": reply password

endcase

busycursor off

In this example, the cursor appears as an hourglass while the
match function proceeds.

Chapter 6 CASL Language

bye (statement)

Use bye to end a connection.

Format bye

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
bye (statement) 131

Comments This statement immediately disconnects the current session.

Example wait for "Logged off" : bye

In this example, the macro waits for the phrase "Logged off"
and then disconnects the session.

See Also quit

Chapter 6 CASL Language

capture (statement)

Use capture to send screen output to a file.

Format capture option [filename]

Comments In Accessory Manager, clicking Capture from the File menu
initiates a continuous capture of data received from the host. The
132 capture (statement)

capture statement performs a similar function, controlling
whether data is being captured at any particular time.

When you click Capture from the File menu in Accessory
Manager, you can specify whether to send the data to a printer or
file. In CASL, the destination is determined by the command. Use
capture to send a continuous stream of data to a file; use
printer to send the data to a printer.

For the capture statement, the macro syntax determines the file
name and whether the data in any existing file is overwritten or
appended. However, all other settings that affect the operation of
the capture (such as whether normal or raw data is captured) are
controlled by the options specified on the Capture Options and
Advanced Capture Options dialog boxes within Accessory
Manager. (To view these dialog boxes, make sure that Show
Capture Dialog When Start Capture is selected on the Global
Preferences dialog box. Then click Capture from the File menu,
and click Options on the Capture Printer Settings dialog box.)

Unless you specify a different drive and directory when you specify
the filename , all files are created in the ACCMGR32 folder
within the INFOConnect folder.

option can be any of the following values;

Option Description

new Starts capture and overwrites the specified file

If you use the new option, you must specify a filename .

to Starts capture and appends to the specified file

If you use the to option, you must specify a filename .

Chapter 6 CASL Language

on Starts capture with automatic file naming

The file name is the first five letters of the session name,
followed by a letter for the month (January is A, February
is B, and so forth), and the day of the month. The file
extension is .TXT. For example, if the session name is
TCPA_1 and the file is created on April 15, the file name
is TCPA_D15.TXT.

Option Description
capture (statement) 133

Example 1 capture on

In this example, data is captured to a file that is automatically
named based on the session name and current date.

Example 2 capture new "vutext.txt"

In this example, data is captured in a file called VUTEXT.TXT. If a
file of that name already exists, its content is overwritten.

See Also grab, printer

If the file already exists, it is overwritten.

If you use the on option, do not specify a filename . If
you specify a filename , a compilation error will occur.

pause Suspends data capture

Data already captured is retained in a buffer. You can
restart capture with the capture on or capture
toggle commands, or end it with the capture off
command.

If you use the pause option, do not specify a filename .
If you specify a filename , a compilation error will occur.

toggle or / Toggles the capture state

If capture is on, capture toggle pauses thecapture. If
capture is paused or off, capture toggle starts
capture.

If you use the toggle or / option, do not specify a
filename . If you specify a filename , a compilation
error will occur.

off Stops data capture and closes the file

If you use the off option, do not specify a filename . If
you specify a filename , a compilation error will occur.

Chapter 6 CASL Language

case...endcase (statments)

Use case...endcase to perform statements based on the value
of a specified expression.

Format case expression of
list of values : statement group
list of values : statement group
 ...
134 case...endcase (statments)

...
[default : statement group]

endcase

Comments case lets you take a variety of actions based on the value of a
particular expression. expression can be any type of expression
or variable. list of values is a list of expected values for
expression and must match the data type of expression . The
values can be constants or expressions and must be separated by
commas if you use more than one value on a logical line.

statement group is a series of statements to perform if one of
the items in list of values matches the current expression.
After the associated statement group has been performed, the
macro continues to execute at the point after the endcase
statement (unless control was transferred somewhere else with a
goto or a gosub statement).

default and its associated statement group describe a
statement or group of statements to perform if none of the other
values match. If you include default , be sure it is the last item in
the list. endcase denotes the end of the case...endcase
construct.

You can nest case...endcase statements.

Chapter 6 CASL Language

Example 1 label ask_again
print "Please choose a number (0-4): " ;
input choice
print
case choice of

0, 4 : end
1 : goto choose_speed
2 : goto main_menu
3 : goto save_setup
default : goto ask_again
case...endcase (statments) 135

endcase

In this example, case examines the value of the integer variable
choice . If choice is 0 or 4, the macro ends. If choice has a
value between 1 and 3, the macro branches to the appropriate
label. If choice is not 0 through 4, the default action is taken. If
none of the conditions were met (assuming a default was not
provided), the macro would continue execution at the statement
following the endcase .

Example 2 case left(date, 5) of
 "08/12" : print "Today is Aaron's birthday!"
 "07/04" : print "Why are you here today?"
 "10/31" : alarm 6 : print "Boo!"
endcase

This example shows that you can use case with any type of
expression. The actions taken in this example depend on the date.

See Also gosub, goto, if...then...else, watch...endwatch

Chapter 6 CASL Language

chain (statement)

Use chain to compile and run a macro.

Format chain filename [, args]

Comments chain compiles and runs the specified macro source file (.XWS) if
there is no compiled version of the macro, or if the date of the
136 chain (statement)

source file is more current than the date of the compiled version.
Otherwise, chain runs the compiled version of the macro.

You do not have to include the macro extension, but you must
include the drive and directory where the macro is located.

args represents an optional argument list that contains the
individual arguments to be passed to the other macro. Individual
arguments must be separated by commas.

Example chain "C:\INFOCN32\ACCMGR32\MENU", "arg1", "arg2"

In this example, the macro chains to a macro called MENU and
passes the macro two arguments.

See Also arg, do

Note: The macro that issues a chain statement ends and is
removed from memory; therefore, control cannot be passed back
to it.

Chapter 6 CASL Language

chdir (statement)

Use chdir to change the current disk directory.

Format chdir string

Comments string must be an expression containing a valid directory name.
The current working directory is set to the new value. This does
chdir (statement) 137

not change the current drive designation.

Example 1 chdir "C:\INFOCN32\ACCMGR32"

In this example, the directory is changed to
C:\INFOCN32\ACCMGR32.

Example 2 chdir dirname

In this example, the directory is changed to the directory name
stored in the script’s dirname variable.

See Also drive

Note: You can also use the abbreviation cd for this statement.

Chapter 6 CASL Language

choice (system variable)

Use choice to check the value of the button that dismissed a
dialog box.

Format n = choice

Comments choice contains the value identifying the button used to exit a
138 choice (system variable)

dialog box.

Example 1 dialogbox 20, 50, 280, 100
defpushbutton 10, 10, 80, 80, "Choice 1", ok
pushbutton 100, 10, 80, 80, "Choice 2", cancel
pushbutton 190, 10, 80, 80, "Choice 3", ok

enddialog
print "Choice was "; choice

In this example, choice has a value of 1 if the Choice 1 (ok)
button is chosen, 2 if the Choice 2 (cancel) button is selected, or 3 if
the Choice 3 (ok) button is chosen.

Example 2 dialogbox 20, 50, 280, 100
pushbutton 100, 10, 80, 80, "Choice 1", cancel
pushbutton 190, 10, 80, 80, "Choice 2", ok
defpushbutton 10, 10, 80, 80, "Choice 3", ok

enddialog
print "Choice was "; choice

In this example, choice has a value of 1 if the Choice 1 (cancel)
button is chosen, 2 if the Choice 2 (ok) button is selected, or 3 if the
Choice 3 (ok) button is chosen.

In both of these examples, the buttons are displayed in the same
locations in the dialog box.

See Also dialogbox...enddialog

Chapter 6 CASL Language

chr (function)

Use chr to get a single character string defined by an ASCII
value.

Format x$ = chr(integer)

Comments chr returns a one-byte string that contains the character with the
chr (function) 139

ASCII value contained in integer .

integer is a decimal number that is converted to its Modulo 255
value; therefore, it is in the range of 0–255.

Example 1 cr = chr(13)

In this example, the variable cr is set to ASCII value 13 , which is
a carriage return.

Example 2 reply chr(3)

In this example, the ASCII value 3 is sent to the host.

Chapter 6 CASL Language

cksum (function)

Use cksum to get an integer checksum for a string of characters.

Format x = cksum(string)

Comments cksum returns the arithmetic checksum of the characters
contained in string . string can be any length. You can use this
140 cksum (function)

function to develop a proprietary file transfer protocol, or to check
the integrity of a string transferred between two systems using a
non-protocol transfer.

Example 1 check = cksum(what_we_got)

In this example, the checksum value of the what_we_got variable
is stored in the check variable.

Example 2 if cksum(data_in) <> cksum(data_out) then alarm

In this example, an alarm sounds if the checksum of the data_in
variable is not the same as the checksum of the data_out
variable.

See Also crc

Chapter 6 CASL Language

class (function)

Use class to get the Accessory Manager class value for a single-
character string.

Format x = class(string)

Comments class returns the class number bitmap of the first character in
class (function) 141

string .

The bitmap value returned indicates the class(es) in which the
first character in the string falls. Classes define such groupings as
capital letters (A–Z), decimal digits (0–9), and hexadecimal digits
(0–9 plus A–F or a–f). The following table lists class groupings.

A character may fall into more than one class. For example, the
comma is both a delimiter and a punctuation mark, and returns a
class value of 0xC0 or 192 decimal.

Example x = class(a_char) : if x = 1 then ...

In this example, a_char is a white space if x is 1.

Hexadecimal Decimal Class Contents

0x01 1 White space (space, tab, CR, LF, FF, BS, null)

0x02 2 Uppercase alpha (A–Z)

0x04 4 Lowercase alpha (a–z)

0x08 8 Legal identifier ($, %, _)

0x10 16 Decimal digit (0–9)

0x20 32 Hexadecimal digit (A–F, a–f)

0x40 64 Delimiters: space, comma, period, tab, (, /, \, :, ;, <,
=, >, !

0x80 128 Punctuation: !-\, :-@, [-^, {-~

Chapter 6 CASL Language

clear (statement)

Use clear to clear the terminal screen.

Format clear [window] [, line] [, eow] [, bow] ...
[, eol] [, bol]

Comments If no option is specified, the entire session window is cleared, and
142 clear (statement)

the cursor moves to the top left corner of the window. If an option
is specified, the cursor remains in place. The following table
explains the options.

Example 1 clear bow

In this example, the macro clears the session window from the
cursor to the beginning of the window.

Example 2 clear window

In this example, the macro clears the entire session window.

This option Clears this

window The entire window

line The line on which the cursor is located

eow From the cursor to the end of the window

bow From the cursor to the beginning of the window

eol From the cursor to the end of the current line

bol From the cursor to the beginning of the current line

Chapter 6 CASL Language

close (statement)

Use close to close an open data file.

Format close [# filenum]

Comments close ends access to an open file. If a filenum is not specified, all
open files are closed. (All open files are closed automatically when
close (statement) 143

the macro that opened them terminates.)

The # symbol must precede the file number.

Example close

In this example, all open files are closed.

See Also open

Chapter 6 CASL Language

cls (statement)

The cls statement, which is a synonym for the clear statement,
is supported only for backward compatibility. Refer to “clear
(statement)” on page 142.
144 cls (statement)

Chapter 6 CASL Language

compile (statement)

Use compile to compile a macro file.

Format compile " filename "

Comments This statement compiles the specified macro. The compiled macro
file is saved in the same directory where the source macro is
compile (statement) 145

found.

Example compile "MENU"

In this example, the macro called MENU is compiled.

Chapter 6 CASL Language

connected (function)

The connected function, which is a synonym for the online
function, is supported only for backward compatibility. Refer to
“online (function)” on page 262.
146 connected (function)

Chapter 6 CASL Language

copy (statement)

Use copy to copy a file or group of files.

Format copy [some] filefrom , fileto

filefrom must be a legal file name (full path names and wild
cards are permitted). fileto specifies the new file name for the
copy; it defaults to the current directory.
copy (statement) 147

If you specify some, the user must approve each file before it is
copied.

Example 1 copy "menu.xts", "menu2.xts"

In this example, MENU.XTS is copied to MENU2.XTS.

Example 2 copy "*.xts", "*.bak"

In this example, the macro copies each file with the .XTS
extension and gives the copied files a .BAK extension.

Example 3 copy some "*.xts", "A:"

In this example, the macro copies all files with the .XTS extension
to drive A, but confirmation is requested of the user before each
individual file is copied.

Chapter 6 CASL Language

count (function)

Use count to determine the number of occurrences of a character
within a string.

Format x = count(string1 , string2)

Comments count returns the number of times any of the characters in
148 count (function)

string2 occur in string1 . This function can take the place of the
instr function in a counting loop to determine how many times
your macro must take some future action.

This function is case-sensitive.

See Also instr

Example 1 x = count("sassafras", "s")

In this example, count returns the number of times the letter s
occurs in the string "sassafras" . The result is 4.

Example 2 x = count("sassafras", "sa")

In this example, count returns the number of times the letters s
and a occur in the string "sassafras" . The result is 7.

Chapter 6 CASL Language

crc (function)

Use crc to determine the cyclical redundancy check value for a
string.

Format x = crc(string [, integer])

Comments x is returned as the crc of string . The crc starts with a value of
crc (function) 149

0 unless a starting value is given in integer .

As with the cksum function, you can use crc to develop a
proprietary file transfer protocol or to check the integrity of a
string.

Example 1 x = crc("AM")

In this example, x is assigned the crc value of the string AM.

Example 2 x = crc(text_line)

In this example, x is assigned the crc value of the text_line
variable.

See Also cksum

Chapter 6 CASL Language

curday (function)

Use curday to find out the current day of the month.

Format x = curday

Comments curday returns the current day of the month. The returned value
is always in the range of 1–31.
150 curday (function)

Example 1 x = curday

In this example, x is set to the current day of the month.

Example 2 if curday = 15 then gosub pay_bills

In this example, control passes to the subroutine pay_bills if the
current day is day 15.

See Also curmonth, curyear, date

Chapter 6 CASL Language

curdir (function)

Use curdir to check the name of the current directory.

Format x$ = curdir[(string)]

Comments curdir returns the current directory of the drive specified by
string . If you do not specify string , curdir returns the
curdir (function) 151

directory of the current drive. curdir returns a null string if the
specified drive is not available.

Example 1 where_we_are = curdir

In this example, curdir stores the name of the current directory
in the where_we_are variable.

Example 2 whats_on_a = curdir("a:")

In this example, curdir stores the name of the current directory
for drive A in the whats_on_a variable.

See Also curdrive

Chapter 6 CASL Language

curdrive (function)

Use curdrive to find out the current default drive.

Format x$ = curdrive

Comments curdrive returns a two-character string consisting of the letter of
the current drive followed by a colon.
152 curdrive (function)

Example 1 what_we_are_on = curdrive

In this example, curdrive stores the letter of the current drive in
the what_we_are_on variable.

Example 2 if curdrive > "C:" then ...

In this example, the macro takes some action if the letter of the
current drive is greater than C (such as D, E, F, and so on).

See Also curdir, drive

Chapter 6 CASL Language

curhour (function)

Use curhour to get the current hour in a 24-hour format.

Format x = curhour

Comments curhour returns an integer value containing the current hour, in
the range of 0–23.
curhour (function) 153

Example 1 x = curhour

In this example, curhour sets the variable x to the number of the
current hour.

Example 2 if curhour = 23 then chain "CALLBBS"

In this example, the macro chains to a macro called CALLBBS if
curhour is set to 23.

See Also curminute, cursecond

Chapter 6 CASL Language

curminute (function)

Use curminute to get the current minute.

Format x = curminute

Comments curminute returns an integer containing the current minute, in
the range of 0–59.
154 curminute (function)

Example 1 x = curminute

In this example, x is set to the current minute.

Example 2 if curminute = 30 then ...

In this example, the macro takes some action if the current minute
is equal to 30.

See Also curhour, cursecond

Chapter 6 CASL Language

curmonth (function)

Use curmonth to get the number of the current month.

Format x = curmonth

Comments curmonth returns an integer value containing the current month,
in the range of 1–12.
curmonth (function) 155

Example 1 x = curmonth

In this example, x is set to the current month.

Example 2 if curmonth = 12 then ...

In this example, the macro takes some action if the current month
is 12.

See Also curday, curyear, date

Chapter 6 CASL Language

cursecond (function)

Use cursecond to get the current second.

Format x = cursecond

Comments cursecond returns an integer value containing the current
second, in the range of 0–59.
156 cursecond (function)

Example 1 x = cursecond

In this example, x is set to the current second.

Example 2 if cursecond = 30 then ...

In this example, the macro takes some action if the current second
is equal to 30.

See Also curhour, curminute

Chapter 6 CASL Language

curyear (function)

Use curyear to find out the current year.

Format x = curyear

Comments curyear returns an integer value containing the current year.
curyear (function) 157

Example 1 x = curyear

In this example, x is set to the current year.

Example 2 if curyear = 1997 then ...

In this example, the macro takes some action if the current year is
1997.

See Also curday, curmonth, date

Chapter 6 CASL Language

date (function)

Use date to return a date string.

Format x = date[(integer)]

Comments If integer is not specified or has a value of 0, date returns a
string containing the current system date.
158 date (function)

The returned string uses the format specified in the Short Date
Style in the Control Panel. To modify the format, click the
Windows Start button, point to Settings, and click Control Panel.
Double-click Regional Settings, click the Date tab, and click the
desired item from the Short Date Style list box.

If integer is specified and has a value other than 0, it indicates
the number of days that have elapsed since January 1, 1900, and
date returns the date string for that day.

Example 1 x = date(31354)

In this example, the macro sets x to 11/04/85.

See Also curday, curmonth, curyear

Chapter 6 CASL Language

definput (system variable)

Use definput to select a default file number for input.

Format definput = filenum

Comments filenum must be an integer expression. definput lets you
specify a default file number for all file input operations that
definput (system variable) 159

follow the definput declaration. eof , eol , get , loc , read , read
line , and seek , assume the file number specified by definput if
no explicit file number is provided.

This variable is valid only for files opened in input or random
mode.

See Also eoof, eol, get, loc, open, read, read line, seek

Chapter 6 CASL Language

defoutput (system variable)

Use defoutput to select a default file number for output.

Format defoutput = filenum

Comments filenum must be an integer expression. defoutput lets you
specify a default file number for all file output operations that
160 defoutput (system variable)

follow the defoutput declaration. put , write , and write line
assume the file number specified by defoutput if no explicit file
number is provided.

This variable is valid only for files opened in output or random
mode.

See Also open, put, write, write line

Chapter 6 CASL Language

dehex (function)

Use dehex to convert an enhex string back to its original format.

Format x$ = dehex(string)

Comments dehex converts a string of ASCII characters in hexadecimal
format back to a string of binary data.
dehex (function) 161

Since each byte in string is a two-byte hexadecimal
representation, the string returned by dehex is half as long as
string .

Like entext and detext , enhex and dehex are complementary
functions designed to permit the exchange of binary information
over communications services that allow only 7-bit transfers;
many of the electronic mail systems allow the transfer of only 7-bit
ASCII information.

Binary data strings that have been converted with enhex require
dehex to restore the 8-bit binary format.

Example 1 program_line = dehex(sendable)

In this example, dehex converts the ASCII hexadecimal string
sendable to binary and returns the result in program_line .

Example 2 spread_sheet_line = dehex(nextline)

In this example, dehex returns the binary equivalent of nextline
in spread_sheet_line .

See Also detext, enhex, entext

Chapter 6 CASL Language

delete (statement)

Use the delete statement to delete files from the disk.

Format delete [noask] " filename "

Comments delete removes a file from the disk. filename must be a valid
file name, which can contain a drive and directory. If filename
162 delete (statement)

contains wild cards, the user is asked to confirm the deletion of
each file.

Use noask to suppress user intervention.

Example 1 delete "script1.xws"

In this example, the file SCRIPT1.XWS is deleted.

Example 2 input f$: delete f$

In this example, the macro accepts the file name typed by the user
and then deletes the file.

Chapter 6 CASL Language

delete (function)

Use the delete function to remove characters from a string.

Format x$ = delete(string [, start [, length]])

Comments delete returns string with length characters removed
beginning at the character represented by start . If length is not
delete (function) 163

specified, one character is removed. If start is omitted, the
deletion starts at the first character position in string .

start must be in the range 1 <= start <= length(string) .

If start + length is greater than length(string) , the leftmost
start -1 bytes are returned.

Example dog_name = delete("Fixxxdo", 3, 3)

In this example, the macro deletes three characters, starting at
position 3, from the string "Fixxxdo" . The result is Fido.

Chapter 6 CASL Language

description (system variable)

Use description to read or set the description of the current
session.

Format description = string

Comments description sets and reads the descriptive text associated with
164 description (system variable)

the current session. Only 40 characters are displayed. You can set
the description to a null string ("").

Example description = "Order Input"

In this example, the macro sets description to the indicated
string.

See Also name

Chapter 6 CASL Language

destore (function)

Use destore to restore strings converted with the enstore
function;enstore function back to their original form.

Format x$ = destore(string)

Comments destore converts strings of printable ASCII characters, which
destore (function) 165

have been converted with enstore , back to their original
embedded control character form.

Control characters in caret notation, such as ^G, are converted
back to control characters, in this case a Ctrl+g (bell) character.
The vertical bar (|) is translated to a Ctrl+m (CR).

destore does not convert a caret preceded by a grave accent (`);
however, the grave accent is discarded since it is no longer needed
for protection. Therefore, `^G becomes ^G.

You must have created string with enstore .

Example line_to_show_user = destore(password)

In this example, destore converts the string password back to
its original form and returns the result in line_to_show_user .

See Also enstore

Chapter 6 CASL Language

detext (function)

Use detext to convert an entext string back to its original form.

Format x$ = detext(string)

Comments This function works with the entext function to transfer 8-bit
data over 7-bit networks. entext takes binary data and converts
166 detext (function)

it to normal 7-bit ASCII characters (the result may even be
readable); detext takes the entext data and converts it back to
its original form.

You must have originally converted string with entext .

Example convtd_text = detext(ntxtd_string)

In this example, detext converts ntxtd_string from 7-bit
ASCII characters to 8-bit binary form and returns the result in
convtd_text .

See Also entext

Chapter 6 CASL Language

device (system variable)

Use device to read or set the connection tool for the current
session.

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
device (system variable) 167

Format device = string

Comments The connection tool used by InterCom, PEP, and ALC sessions is
ICSTOOL.

After you specify the connection tool with an assume statement,
you can read or set variables that affect the configuration of the
connection tool. For more information, refer to Chapter 7,
“Connection, Terminal, and File Transfer Tools.”

Example assume device "ICSTOOL"
print PathID

This example displays the name of the INFOConnect path type for
the current session.

See Also assume, protocol, terminal

Chapter 6 CASL Language

dialogbox...enddialog (statements)

Use dialogbox...enddialog to create custom dialog boxes.

Format dialogbox x,y,w,h [, caption]
[defpushbutton x, y, w, h, string [, options]]
[pushbutton x, y, w, h, string [, options]]
[ltext x, y, w, h, string]
[ctext x, y, w, h, string]
168 dialogbox...enddialog (statements)

[rtext x, y, w, h, string]
[edittext x, y, w, h, init_text, ...

str_result_var [, options]]
[radiobutton x, y, w, h, string, result_var ...

[, options]]
[checkbox x, y, w, h, string, result_var ...

[, options]]
[groupbox x, y, w, h, title]
[listbox x, y, w, h, comma_string , ...

int_result_var [, options]]
[listbox x, y, w, h, string_array , ...

int_result_var [, options]]
enddialog

Comments This statement is useful for designing a user interface for your
macros. Using dialogbox...enddialog , you can create dialog
boxes that are easy to use and work like standard dialog boxes.

You must define all variables used in a dialog box before using the
dialogbox...enddialog construct. The values assigned to
variables for radiobutton , checkbox , and listbox are used to
set the initial value of these dialog items. For radiobutton and
checkbox , setting the boolean variable result_var to true
selects it; false does not. For listbox , setting the integer
variable int_result_var determines which item in the list box
is highlighted. The range is limited by the number of items in the
list.

Unless otherwise specified, Accessory Manager defines the first
letter of a button or prompt as an accelerator. You can define your
own accelerator by placing an ampersand (&) in the string used for
the text. The letter after the ampersand becomes the accelerator.

The Dialog Box Items table describes the elements of the
dialogbox...enddialog syntax. The Dialog Box Options table

Chapter 6 CASL Language

desribes the options supported by those dialog box items that
include options in their syntax.

Dialog Box Items

Item Description

x , y (for dialogbox) Pixel coordinates for the dialog box

w, h (for dialogbox) Width and height of the dialog box

caption The title of the dialog box
dialogbox...enddialog (statements) 169

defpushbutton The default button (it has a bold border)

Pressing Enter peforms the same action as clicking
this button. You would normally use defpushbutton
for the dialog box’s OK button.

Any dialog box must have at least one button. If there
is only one button on the dialog box, use
defpushbutton to define it.

x , y (for all other items
in the syntax)

Pixel coordinates for the dialog box item within the
dialog box

The origin of x and y is 0,0, which is the top left corner
of the dialog box.

w, h (for all other items
in the syntax)

Width and height of the dialog box item

A horizontal unit is 1/4 of a system font character; a
vertical unit is 1/8 of a system character font.

string The text to display on the dialog box

options Refer to the Dialog Box Options table

pushbutton A button that the user can click (such as OK or
Cancel)

For this dialog box item, the width should be the length
of (string * 4) + 10. The height is usually 14.

ltext Left-justified text within the dialog box

The width should be 4 times the length of string .
The height is usually 8.

ctext Centered text within the dialog box

The width should be 4 times the length of string .
The height is usually 8.

rtext Right-justified text within the dialog box

The width should be 4 times the length of string .
The height is usually 8.

Chapter 6 CASL Language

edittext A text box for user input

Precede edittext with ltext , ctext , or rtext to
display a label for the text box.

The width of the text box should be at least four times
the maximum length of the string the user may type.
The height is usually 12.

Dialog Box Items, continued

Item Description
170 dialogbox...enddialog (statements)

str_restul_var This returns the text typed in the edit box by the user

radiobutton A round radio or option button that is chosen when
clicked by the user

Radio buttons normally provide users with several
mutually exclusive options. The first radiobutton in
a group must have the tabstop group option set,
or the arrow keys might not work properly in the dialog
box.

The first dialog item after a group of radiobutton
definitions must also have the tabstop group
option so that the operating environment knows
where one group ends and the next one begins.

The width of a radiobutton is generally the length
of (string * 4) + 10. The height is generally 10.

result_var This item is true if the radio button or check box is
selected, false if not.

For radio buttons, you must examine result_var for
each radiobutton until you find one that is set to
true.

For check boxes, result_var is true or false
depending on whether the check box was checked or
not after the user exits the dialog box.

checkbox A square box that is checked or cleared when the user
clicks it

The width of a checkbox should be at least the length
of (string * 4) + 10 . The height is usually 12.

groupbox A box for a group of dialog items yet to be defined

Dialog item definitions for this box should follow.

title The title of the group box

This appears in the upper border of the group box.

Chapter 6 CASL Language

listbox A list box

If you use comma_string with listbox , the list box
displays the comma-delimited strings in
comma_string . The width of the list box should be at
least four times the length of the longest string in
comma_string . The height should be eight times the
number of items from comma_string that you want

Dialog Box Items, continued

Item Description
dialogbox...enddialog (statements) 171

to display at one time. The height of the list box is
limited by the height of the dialog box.

If you use string_array with listbox , the list box
displays an array. The width of the list box should be
at least four times the length of the longest string in
string_array . The height should be eight times the
number of items from string_array that you want
to display at one time.

comma_string The items to display in the list box, separated by
commas

string_array The array to display in the list box

The array must be single-dimensional with an
alternative lower boundary of 1.

int_result_var The number of the list box item selected

If no item was selected, zero is returned.

Chapter 6 CASL Language

Dialog Box Options

Option Description

tabstop Marks a dialog item to which you can tab using the keyboard

tabstop group Marks the beginning or end of a group of radio buttons

You normally press Tab to get to the first button in a group of
radio buttons, then use the arrow keys to move from one
button to the next. Pressing Tab again takes you to the next
dialog item after the radio button group.
172 dialogbox...enddialog (statements)

When the user exits the dialog box, the variable choice is
assigned the number of the button used to exit the dialog box. For
example, if the first button is chosen, choice is set to 1; if the
fourth button is selected, choice is set to 4. The macro can then
check choice to take appropriate action. Note that no variables
are updated if the user clicks Cancel.

focus Defines where to place the cursor within the dialog box

If this option is not used, the focus is set at the first tab stop in
the dialog box.

secret Specifies that placeholders should be displayed for the
characters entered by the user.

This option is useful for entries such as passwords and
applies only to edittext .

ok Identifies the button to associate with Enter

This option applies only to defpushbutton or pushbutton .

cancel Identifies the button to associate with Esc

This option applies only to defpushbutton or pushbutton .

Chapter 6 CASL Language

Example 1 dialogbox 61, 20, 196, 76
ltext 6, 4, 148, 8, "About calling " + ...
"Administration directly ..."
ltext 6, 24, 176, 8, "When setting up " + ...
"Accessory Manager to call Administration"
ltext 6, 36, 188, 8, "directly, you must " + ...
"leave the NetID field blank."
defpushbutton 80, 56, 36, 14, "OK", tabstop

enddialog

This example displays a simple dialog box that provides some
dialogbox...enddialog (statements) 173

information for the user. The user can read the text and click OK
when ready to continue.

Example 2 string edit$
boolean check1, check2
boolean radio1, radio2
integer list1
string items[1:8]

label SampleDialog

check1 = true -- true shows the check box selected
check2 = true
list1 = 3 -- a 3 highlights the 3rd

-- item in the list
radio1 = true -- true shows the radio

-- button selected
radio2 = false -- false shows that the radio

-- button is not selected
items[1] = "Item1" -- array elements 1 through 8
items[2] = "Item2"
items[3] = "Item3"
items[4] = "Item4"
items[5] = "Item5"
items[6] = "Item6"
items[7] = "Item7"
items[8] = "Item8"

Chapter 6 CASL Language

dialogbox 34, 23, 253, 125
ltext 4, 4, 86, 8, "Sample Dialog Box"
groupbox 4, 18, 197, 52, "Accessory Manager"
checkbox 12, 30, 154, 12, "Designed for " + ...

"the Windows environment", check1, tabstop
checkbox 12, 42, 150, 12, "Includes a " + ...

"powerful macro language", check2, tabstop ...
focus

listbox 4, 74, 72, 40, items, list1, tabstop
ltext 87, 76, 44, 8, "Enter text:"
edittext 135, 76, 94, 12, "", edit$, tabstop
174 dialogbox...enddialog (statements)

radiobutton 88, 91, 93, 12, "Radio Button 1", ...
radio1, tabstop group

radiobutton 88, 103, 93, 12, ...
"Radio Button 2", radio2

defpushbutton 208, 22, 36, 14, "OK", ok ...
tabstop group

pushbutton 208, 39, 36, 14, "Cancel", cancel ...
tabstop

enddialog

This example produces a more complex dialog box that contains
check boxes, a list box, text boxes, and radio buttons.

See Also alert, choice, passchar

Chapter 6 CASL Language

display (system variable)

Use display to enable or disable the display of incoming
characters.

Format display = option

Comments option is one of the following:
display (system variable) 175

Characters sent to the screen with the print statement are
considered incoming characters and are not displayed if display
is off .

display is active only while the macro that is using it is running.

Example wait for "Password:"
display = off
reply password
display = on

In this example, the macro waits for the password prompt from
the host. When the prompt is received, display is turned off, the
contents of the system variable password are sent to the host,
and display is turned back on.

See Also print

State Result

on Incoming characters are displayed.

off Incoming characters are not displayed.

Chapter 6 CASL Language

do (statement)

Use do to compile and run a macro.

Format do filename [, args]

Comments Like the chain statement, the do statement invokes another
macro and passes control to that macro. However, unlike the
176 do (statement)

macro that uses the chain statement, the macro issuing the do
statement does not terminate after it invokes the child macro.
Instead, it waits until the other macro returns control.

Like chain , do compiles and runs a macro source file (.XWS) if
there is no compiled version of the macro, or if the date of the
source file is more current than the date of the compiled version.
Otherwise, do runs the compiled version of the macro.

You do not have to include the macro extension, but you must
include the drive and directory where the macro is located.

In the do statement, args represents an optional argument list
that contains the individual arguments to be passed to the other
macro. Individual arguments must be separated by commas.

When you use the do statement to invoke another macro, the
macros can exchange variable information. To pass a variable
between macros, declare the variable as public in the invoking
macro and as external in the invoked macro. (For information
about public and external variables, refer to Chapter 3,
“Variables, Arrays, Procedures, and Functions.”)

For more information about invoking other macros, refer to
Chapter 4, “Interacting with the Host, Users, and Other Macros.”

Example 1 do "C:\INFOCN32\ACCMGR32\SCRIPT2"

In this example, a macro called SCRIPT2 is invoked as a child
macro.

Example 2 do "C:\INFOCN32\ACCMGR32\SCRIPT2", "CSERVE"

In this example, the argument CSERVE is passed to SCRIPT2.

See Also arg, chain, compile

Chapter 6 CASL Language

drive (statement)

Use drive to change the default disk drive.

Format drive string

Comments string must be an expression representing a valid disk drive.
The default drive for all subsequent file operations will be set to
drive (statement) 177

the new drive.

Example 1 drive "A:"

In this example, the drive is changed to A.

Example 2 drive dname$

In this example, the drive is changed to the value contained in the
variable dname$.

See Also curdrive

Chapter 6 CASL Language

end (statement)

Use end to indicate the logical end of a macro.

Format end

Comments end marks the logical end of a macro. When an end statement is
encountered, the following occurs:
178 end (statement)

■ All variables associated with that macro are discarded.

■ All files opened by the macro are closed.

■ Execution of the macro is terminated.

■ If the macro was invoked by a parent macro, execution
continues in the parent macro.

Although it is a good programming practice to have an end
statement at the physical end of the macro source code as well as
at the logical end of the source code, CASL accepts the physical
end of the macro as the logical end if no end statement is found.

Example if not online then end

In this example, the macro ends if it is not online.

See Also halt

Chapter 6 CASL Language

enhex (function)

Use enhex to convert a string of binary data to a string of ASCII
characters in hexadecimal format.

Format x$ = enhex(string)

Comments enhex returns a string of ASCII characters that represent, in
enhex (function) 179

hexadecimal format, the data in string .

Since each byte in string is converted to a two-byte hexadecimal
representation, the string returned by enhex is twice as long as
string .

Like entext and detext , enhex and dehex are complementary
functions designed to permit the exchange of binary information
over communication services that allow only 7-bit transfers.

Binary data strings that have been converted with enhex require
dehex to restore them to 8-bit binary format.

Example 1 sendable = enhex(program_line)

In this example, enhex converts the binary string program_line
to a string of ASCII characters and returns the result in
sendable .

Example 2 reply enhex(spread_sheet_line)

In this example, the macro sends the result of the enhex
conversion to the host.

See Also dehex, detext, entext

Chapter 6 CASL Language

enstore (function)

Use enstore to convert strings that may have embedded control
characters into strings of printable ASCII characters.

Format x$ = enstore(string)

Comments In general, control characters are changed to caret notation (that
180 enstore (function)

is, a Ctrl+g (bell) character is changed to ^G). When you use the
resulting string in a string operation (such as a reply statement),
the characters ^G are interpreted as Ctrl+g. The vertical bar (|)
is used to represent Ctrl+m (CR).

enstore uses the grave accent(`) to protect any existing carets
from later interpretation.

enstore is useful in macro file management of passwords and
other strings that often contain embedded control characters.

Strings that have been converted with the enstore function can
be returned to their original form with the destore function.

Example 1 password = enstore("ALE" + chr(3))

In this example, the result of the enstore conversion is returned
in password .

Example 2 reply enstore(line_input_by_user)

In this example, the macro sends the result of the enstore
conversion to the host.

See Also destore

Chapter 6 CASL Language

entext (function)

Use entext to convert a string of binary data to a string of
printable ASCII characters.

Format x$ = entext(string)

Like enhex and dehex , entext and detext are complementary
functions designed to permit the exchange of binary information
entext (function) 181

over communication services that allow only 7-bit transfers.

Binary data strings that have been converted to ASCII with
entext require the detext function to restore them to 8-bit
binary format. The algorithm used by entext changes three 8-bit
characters to four printable characters.

Example 1 sendable = entext(program_line)

In this example, the ASCII equivalent of the binary string
program_line is assigned to sendable .

Example 2 reply entext(spread_sheet_line)

In this example, spread_sheet_line is converted to ASCII
characters and then sent to the host.

See Also dehex, detext, enhex

Chapter 6 CASL Language

environ (function)

Use environ to obtain the value of a DOS environment variable.

Format x$ = environ(string)

Comments environ returns the value of a specified operating system
environment, such as the path.
182 environ (function)

string is not case-sensitive. A null string is returned if string is
not found in the operating system environment.

Example string dpath
dpath = environ("PATH")

In this example, the path setting is placed in the script’s dpath
variable.

Chapter 6 CASL Language

eof (function)

Use eof to determine whether the end-of-file marker has been
reached.

Format x = eof[(filenum)]

Comments eof returns true if the file specified in filenum is at the end of
eof (function) 183

the file. It returns false until the last record has been read; then
it returns true .

If filenum is not specified, the file number defaults to the
definput system variable.

In random files, eof returns true when the most recent get
statement returns less than the requested number of bytes. get
does not read past the end of the file.

In input (sequential) files, eof returns true when the most recent
read or read line statement reads the last record in the file.
The contents of the last record of a file depend on the method used
to create it. Some applications place a Ctrl+z (ASCII 26 decimal)
character at the end of the file; other applications do not. Still
other applications round out the file to a length evenly divisible by
128, either by writing multiple Ctrl+z characters or by writing a
single Ctrl+z followed by whatever was in the rest of the output
buffer on the previous write.

Example string name
while not eof

read name
print name

wend
end

This code fragment reads strings from an already open sequential
file and prints them to the screen. When the end-of-file marker is
reached, the while...wend loop is terminated, and the macro
ends.

See Also definput, get, read, seek

Chapter 6 CASL Language

eol (function)

Use eol to determine if a carriage-return/line-feed character,
indicating the end of a line, was part of the data read during the
last read statement.

Format x = eol[(filenum)]
184 eol (function)

Comments eol returns true if the last read statement encountered a
carriage-return/line-feed (CR/LF) character.

filenum is the file number assigned to the file when it was
opened. If filenum is not specified, the file number defaults to the
definput system variable.

Like eof , eol indicates the status of a data file following a read
operation; however, eol works only on sequential input files, and
reports whether the most recent read statement read the last
field in the line (that is, encountered a CR/LF). Most applications
use CR/LF to indicate the end of a line.

When reading comma-delimited ASCII files with read
statements, use eol to ensure alignment of the file reading
commands with the contents of the file, especially when the file
was written using another application.

Example string name
open input "names.dat" as 1
definput = 1
while not eof

read name
print name ;
while not eol

read name
print " and " ; name ;

wend
print

wend

Chapter 6 CASL Language

In this example, a file with a file number of 1 is opened for input.
The two while...wend loops control the read operations. The
outer loop is set so that the file is read until the end-of-file marker
is reached. Within each read operation, the inner loop ensures
that all of the data through the end-of-line character is read and
printed.

See Also definput, read
eol (function) 185

Chapter 6 CASL Language

errclass (system variable)

Use errclass to check the type of the last error.

Format x = errclass

Comments errclass contains an integer reflecting the type of error that last
occurred. It is 0 if no error has occurred.
186 errclass (system variable)

errclass is not cleared when you check it. It remains unchanged
until another error occurs.

Example trap on
send fname
trap off
if error then

case errclass of
45: goto file_tran_err
26: goto call_fail_err
default: goto other_err

endcase

This example shows how to test for such things as file transfer or
call failure errors after a macro executes a file transfer command.

See Also errno, error, trap

Chapter 6 CASL Language

errno (system variable)

Use errno to check the specific type of the last error.

Format x = errno

Comments errno contains an integer reflecting the error number, within the
errclass , for the error that last occurred. It is 0 if no error has
errno (system variable) 187

occurred.

errno is not cleared when you check it. It remains unchanged
until a different error occurs.

Example trap on
send fname
trap off
if error then E1 = errclass : E2 = errno

In this example, error trapping is turned on, a file transfer is
attempted, and trapping is turned off. If an error occurred, E1 is
set to the value in errclass , and E2 is set to the value in errno .

See Also errclass, error, trap

Chapter 6 CASL Language

error (function)

Use error to check for the occurrence of an error.

Format x = error

Comments error reports the occurrence of an error. It returns true if an
error occurred and false if no error occurred.
188 error (function)

error is reset each time it is tested. If you want to continue to
trap errors throughout the execution of the macro, error must be
cleared out (tested) after each error occurs.

When you use error with the trap compiler directive, you can
direct program flow to an error handling routine.

error merely indicates that there has been an error. errclass
and errno specify which error has occurred. errclass and
errno are not cleared when tested.

Example trap on
compile "zark"
trap off
if error then print "Compile failed."

In this example, error trapping is turned on and the macro zark is
compiled. Then error trapping is turned off. If an error occurred,
the macro prints an error message.

See Also errclass, errno, trap

Note: Fatal run-time errors cannot be trapped.

Chapter 6 CASL Language

exists (function)

Use exists to determine whether a file or subdirectory exists.

Format x = exists(string)

Comments string must be a legal file name or subdirectory name, and can
contain drive specifiers, path names, and wildcard characters.
exists (function) 189

exists returns true if the item specified in string exists, and
false if it does not. This function returns true if the directory
exists, even if it’s empty.

Use exists only to check for files and subdirectories. It does not
work for root directories.

Example 1 print exists("ACCMGR32.EXE")

In this example, either true or false is displayed, depending on
the existence of the file ACCMGR32.EXE.

Example 2 if exists("C:\BIN") then
print "BIN directory!"

In this example, a message is displayed if the directory BIN exists
on the C drive.

Example 3 if not exists(dat_file) then goto dat_error

In this example, the macro branches to the label dat_error if the
dat_file does not exist.

Chapter 6 CASL Language

exit (statement)

Use exit to exit from a procedure.

Format exit

Comments When an exit statement is encountered, the procedure returns
control to the statement following the one that called it.
190 exit (statement)

Example proc test takes integer x
if x < 1 then exit
print x; " seconds remaining."

endproc

In this example, the procedure test is called with the argument
x . If x is less than 1, the procedure returns control to the
statement following the one that called it. Otherwise, a message is
displayed, and then the procedure returns control when endproc
is executed.

See Also chain, do, end, proc...endproc

Chapter 6 CASL Language

false (constant)

Use false to set a boolean variable to logical false.

Format x = false

Comments false is always logical false. Like its complement true , false
exists as a way to set variables on and off. If false is converted to
false (constant) 191

an integer, its value is 0.

Example done = false
while not done
 ...
 ...
wend

In this example, the statements in the while...wend construct
are repeated until done is true .

See Also off, on, true

Chapter 6 CASL Language

filefind (function)

Use filefind to check a file name.

Format x$ = filefind[(string [, integer])]

Comments string must be a legal file specification that can include drive
specifiers and path names as well as wildcard characters.
192 filefind (function)

filefind returns the full path name of a file matching the
pattern specified in string . If string is not used, filefind
returns the name of the next file in the directory that fits the last
file specification given as string . If no such file is found,
filefind returns the null string.

If both string and integer are used, filefind returns the
name of the first file in the directory whose name matches string
and whose attribute bitmap equals integer . The bitmap
returned is the total of the possible attributes shown in the
following table:

Hexadecimal Decimal Attribute Meaning

0x01 1 A read-only file.

0x02 2 A hidden file. The file is excluded from
directory searches.

0x04 4 A system file. The file is excluded from
directory searches.

0x08 8 The volume name of a disk.

Note : This is not supported.

0x10 16 A directory.

0x20 32 An archive bit. This bit indicates the file
has been changed since it was last
backed up.

Chapter 6 CASL Language

Example x = filefind("*.*")
while not null(x)

print x
x = filefind

wend

In this example, the macro displays a list of files in the current
directory.
filefind (function) 193

Chapter 6 CASL Language

filesize (function)

Use filesize to check the size of a file.

Format x = filesize[(filename)]

Comments If filename is used, filesize returns the size of the specified
file. If filename is not used, filesize returns the size of the file
194 filesize (function)

found by the most recent filefind .

filename must be a legal file specification that can contain drive
specifiers and path names as well as wildcard characters.

Example 1 progsize = filesize("ACCMGR32.EXE")

In this example, the size of ACCMGR32.EXE is returned in
progsize .

Example 2 print filesize

In this example, the macro displays the size of the file found by the
most recent filefind .

See Also filefind

Chapter 6 CASL Language

fncheck (function)

Use fncheck to check the validity of a file name specification.

Format x = fncheck(string)

Comments fncheck provides a quick way to parse file names. It returns a
value indicating the presence or absence of various file name parts
fncheck (function) 195

such as the drive letter, path, name, file type extension, and
wildcards. For this to work properly, string must be a legal file
name.

The parts of the file name are determined by the punctuation
found in the name. For example, if a colon is found, fncheck
assumes that a drive letter is present. The following table lists the
punctuation that is checked, the parts of the file name that are
assumed as a result, and the values that are returned
(hexadecimal and decimal).

The values are added together for every part of a file name that is
found.

Example print fncheck(long_file_spec)

In this example, the various parts of the file name
long_file_spec are displayed.

See Also fnstrip

Punctuation Part
Hexadecimal

Value
Decimal

Value

Colon Drive 0x01 1

Backslash Directory 0x02 2

Period Extension 0x04 4

Question mark Wild card 0x08 8

Asterisk Wild card 0x10 16

Chapter 6 CASL Language

fnstrip (function)

Use fnstrip to return specified portions of a file name.

Format x$ = fnstrip(string , specifier)

Comments fnstrip provides a quick way to parse file names, breaking them
down into component parts like the drive letter, directory, and file
196 fnstrip (function)

name.

string must be a legal file name and can include a drive,
directory, file name, and extension, as shown in the following
example:

C:\INFOCN32\ACCMGR32\ACCMGR32.EXE

The parts of string that are returned are controlled by the value
of specifier . Valid values for specifier are shown in the
following table.

Add 8 to specifier to return the string in all uppercase
characters; add 16 (decimal) to return the string in all lowercase
characters.

Hexadecimal Decimal Portion Returned

0x00 0 The full file name

0x01 1 The directory, file name, and extension

0x02 2 The drive, file name, and extension

0x03 3 The file name and extension

0x04 4 The drive, directory, and file name (no
extension)

0x05 5 The directory and file name (no
extension)

0x06 6 The drive and file name (no extension)

0x07 7 The file name only (no extension)

Chapter 6 CASL Language

Example 1 print fnstrip(long_file_name, 3)

In this example, the macro displays the file name and extension.

Example 2 progname = fnstrip(long_file_name, 7)

In this example, fnstrip returns only the file name (no
extension).

Example 3 U_Case_ProgName = fnstrip ("C:\INFOCN32\ ...
fnstrip (function) 197

ACCMGR32\ACCMGR32.EXE", 15)

In this example, fnstrip returns the file name in uppercase
characters.

See Also fncheck

Chapter 6 CASL Language

footer (system variable)

Use footer to define the footer to use when printing from
Accessory Manager.

Format footer = string

Comments string can be any valid string expression. You can embed special
198 footer (system variable)

characters in the string to print the date, time, and so on.

Example footer = "Date: " + date

In this example, the word Date: and the current date are
assigned to footer .

See Also header

Chapter 6 CASL Language

for...next (statements)

Use for...next to perform a series of statements a given
number of times while changing a variable.

Format for variable = startvalue to endvalue ...
[step stepvalue]
...
...
for...next (statements) 199

next [variable]

Comments variable can be any integer or real variable. You do not have to
declare the variable previously, but doing so is recommended. Do
not change the value of variable within the for...next contruct;
this can produce erroneous results.

startvalue , endvalue , and stepvalue can be any type of
numeric expression. startvalue specifies the starting value for
the counter, and endvalue specifies the ending value. (If you do
not specify a stepvalue , 1 is assumed.)

The statements in the for...next contruct are performed only
under the following conditions:

■ The stepvalue is greater than or equal to 0, and the
startvalue is less than the endvalue .

■ The stepvalue is less than zero, and the startvalue is
greater than the endvalue .

The statements in the for...next construct are performed until
the next statement is encountered. The value of stepvalue is
then added to variable . If stepvalue is greater than or equal to
0, and if variable is not greater than endvalue , the statements
are repeated. If stepvalue is less than 0, and if variable is not
less than endvalue , the statements are repeated.

You can nest for...next constructs; that is, you can place one
construct inside another one. If you use nested constructs, be sure
to use different variables in each construct. In addition, make sure
that a nested construct resides entirely within another construct.

Chapter 6 CASL Language

Example 1 for i = 1 to 10
print i

next i

In this example, the i variable is incremented by 1 each time the
for...next construct is repeated. With each repetition, the
value of i is displayed on the screen.

Example 2 for i = 10 to 1 step -1
print i
200 for...next (statements)

next i

In this example, the i variable is decremented by 1 each time the
for...next construct is repeated. With each repetition, the
value of i is displayed on the screen.

Example 3 for i = 0 to 100 step 5
print i

next

In this example, the i variable is incremented by 5 each time the
for...next construct is repeated. With each repetition, the
value of i is displayed on the screen.

Example 4 for i = 0 to 10
print "Times table for "; i
for j = 1 to 10

print , i; " times "; j; " is: "; i * j
next
print

next

This is an example of nested for...next constructs.
Multiplication tables for 1*1 through 10*10 are printed.
Indentation is used here to show the relationship of the two
constructs and for program readability.

Chapter 6 CASL Language

freemem (function)

Use freemem to find out how much memory is available.

Format x = freemem

Comments freemem returns the amount of memory that is available at the
time the function is executed. The amount of available memory
freemem (function) 201

changes depending on the activity of other applications.

Example 1 print freemem

In this example, the macro displays the amount of unused
memory.

Example 2 if freemem > 64k then ...

In this example, the macro tests whether available memory
exceeds 64 KB and then performs a certain action.

Chapter 6 CASL Language

freetrack (function)

Use freetrack to return the lowest unused track number for the
current session.

Format x = freetrack

Comments freetrack returns the value of the next available track number.
202 freetrack (function)

It lets you write general-purpose macros that do not require a
specific track number. This is particularly valuable in a macro
that might form part of several other macros.

You can have any number of track statements active at one time,
limited only by available memory. freetrack returns zero if no
track numbers are available.

Always store the results of the freetrack function in a variable,
since the value of the function will change every time a new track
is used.

Example t1 = freetrack
track t1, space "system going down"
wait for key 27
if track(t1) then { bye : end }

In this example, the next available track number is assigned to
t1 . The track statement, using t1 , watches for the specified
string. Its occurrence is tested with the track function.

See Also track (function), track (statement)

Chapter 6 CASL Language

func...endfunc (function declaration)

Use func...endfunc to define and name a function.

Format func name [([type] argument ...
[, [type] argument]...)] returns type
...
...

endfunc
func...endfunc (function declaration) 203

Comments A function is similar to a procedure, but it returns a value. You
must declare the type of the return value within the function
definition and specify a return value before returning.

The arguments are optional. If arguments are included, you must
use the same number and type of arguments in both the function
and the statement that calls the function. The arguments are
assumed to be strings unless otherwise specified.

Any variable declared within a function is local to the function.
The function can reference variables that are outside the function,
but variables within the function cannot be referenced outside the
function.

Functions can contain labels, and the labels can be the target of
gosub...return and goto statements, but such activity must be
wholly contained within the function. If you reference a label
inside a function from outside the function, an error occurs.

You can nest functions at the execution level; that is, one function
can call another. However, you must not nest functions at the
definition level; one function definition cannot contain another
function definition.

You can use forward declarations to declare functions whose
definition occurs later in the macro. The syntax of a forward
function declaration is the same as the first line of a function
definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your
functions near the end of your macro. A function must be declared
before you can call it; the forward declaration provides the means
to declare a function and later define what the function is to
perform.

Chapter 6 CASL Language

The following format is used for a forward declaration:

func name [(arglist)] returns type forward

You can use a similar approach to call functions in a Windows
Dynamic Link Library (DLL). For more information, refer to
“Calling DLL Functions” on page 77.

Functions can be in separate files. To include an external function
in a macro, use the include compiler directive.
204 func...endfunc (function declaration)

Example 1 func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and y are the function arguments.
The values of x and y are passed to the function when it is called.
The value returned by the function depends on the outcome of the
if...then...else comparison. If x is less than y , x is the
return value. If x is not less than y , y is the return value.

Example 2 func calc(integer x, integer y) returns ...
integer forward

return_value = calc(3, 8)

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the function calc is declared as a forward
declaration. Then the function is called.

See Also include, proc...endproc

Note: For ease of programming, you do not have to supply the
parameters in the actual function definition if you use a
forward declaration. For instance, the preceding example can
also be written as follows:

func calc(integer x, integer y) returns ...
 integer forward

return_value = calc(3, 8)

func calc
 if x < y then return x else return y
endfunc

Chapter 6 CASL Language

genlabels (compiler directive)

Use genlabels to include or exclude label information in a
compiled macro.

Format genlabels option

Comments option is one of the following:
genlabels (compiler directive) 205

Example genlabels off

In this example, genlabels is set to off .

See Also genlines

Value Result

off The macro compiler suppresses label information in the compiled
macro. The resulting macro is usually smaller if you use this
directive.

on The macro compiler does not suppress label information in the
compiled macro. The default for the directive is on.

Note: You cannot use the goto @expression statement if
your macro contains the genlabels off compiler directive.

Chapter 6 CASL Language

genlines (compiler directive)

Use genlines to include or exclude line information in a compiled
macro.

Format genlines option

Comments option is one of the following:
206 genlines (compiler directive)

Example genlines off

In this example, genlines is set to off .

See Also genlabels, trace

Value Result

off The macro compiler excludes line information from the
compiled macro.

on The macro compiler includes line information from the
compiled macro. The default for the directive is on.

Chapter 6 CASL Language

get (statement)

Use get to read characters from a random file.

Format get [# filenum ,] integer , stringvar

Comments get reads integer bytes from the random file identified by
filenum and places the bytes read in the string variable
get (statement) 207

stringvar . If filenum is not provided, the macro uses the value
in definput .

If the end-of-file marker is reached during the read, stringvar
might contain fewer than integer bytes, and might even be null.

Each get advances the file I/O pointer by integer positions or to
the end-of-file marker, whichever comes first.

To use the get statement, you must open the file in random mode
and have already declared stringvar .

Example proc byte_check takes one_byte forward
string one_byte
get #fileno, 1, one_byte
while not eof(fileno)

byte_check one_byte
get #fileno, 1, one_byte

wend

This code fragment reads an already opened random file one byte
at a time and calls a procedure to process the byte. This continues
to happen until the end-of-file marker is reached.

See Also definput, open, put, seek

Chapter 6 CASL Language

go (statement)

Use go to establish communications with the host.

Format go

Comments go establishes a connection to the host and runs a session startup
macro (if the session uses a session startup macro).
208 go (statement)

To determine whether the session uses a session startup macro,
open the session, click Session Preferences from the Options
menu, and click the CASL Macro tab. Any macro specified in the
File Name text box is the session startup macro.

If the session is already connected to the host, go does nothing.

See Also bye, quit

Chapter 6 CASL Language

gosub...return (statements)

Use gosub to transfer program control temporarily to a
subroutine. Use return to return control to the calling routine.

Format gosub label
label :
...
...
gosub...return (statements) 209

return

Comments label must be the name of a subroutine label. The subroutine
must end with a return statement.

Subroutines are helpful when you need to execute the same
statements many times in a macro. You can use subroutines as
many times as needed, and you can use the gosub statement in a
subroutine to pass control to other subroutines. You can have up
to eight nested subroutines.

When a gosub statement is encountered, the macro branches to
label . When a return statement is encountered, program
control returns to the statement after the one that called the
subroutine. A subroutine can have more than one return
statement.

Subroutines can appear anywhere in a macro, but it is a good
programming practice to put all of your subroutines together,
usually at the end of the macro.

Example text = "Hello there."
gosub print_centered
end
label print_centered

l = length(text)
if l = 0 then return
print at ypos, (80/2)-(length(text)/2), text
return

This example shows a subroutine called print_centered that
displays a string called text centered on the screen.

See Also goto, label, pop

Chapter 6 CASL Language

goto (statement)

Use goto to branch to a label or expression.

Format goto label

or

goto @expression
210 goto (statement)

Comments label must be the name of a program label.

expression can be any string expression that represents a label
in the macro. If you specify an expression, you must precede the
expression with the “at” sign (@), which forces the expression to be
evaluated at run time.

When a goto statement is encountered in a macro, the macro
branches to label .

Example 1 goto main_menu

In this example, the macro branches to the label main_menu .

Example 2 goto @"handle_" + xvi_keyword

In this example, the macro branches to the specified expression.

See Also gosub...return, label

Note: If you use the goto @ expression form of this
statement, you cannot use the genlabels off compiler
directive.

Chapter 6 CASL Language

grab (statement)

Use grab to send the contents of the session window to a file.

Format grab

Comments grab places the text in the session window into the file specified
on the Print Screen Options dialog box.
grab (statement) 211

For this statement to work, Print To File must be selected on the
Print Screen Printer Settings dialog box. To do this, open a
session, click Print Screen from the File menu, select Print To
File, and click OK.

By default, the file name is the first five letters of the session
name, followed by a letter for the month (January is A, February
is B, and so forth), and the day of the month. The file extension is
.TXT. For example, if the session name is TCPA_1 and the file is
created on April 15, the file name is TCPA_D15.TXT. To change
the file name, click Print Screen from the File menu, make sure
Print To File is selected, click Options, clear Auto Name The File,
and type the desired file name in the File Name text box. (You can
also click Browse and select the desired file from a list of available
files.)

Example grab

See Also capture, printer

Chapter 6 CASL Language

halt (statement)

Use halt to stop macro execution.

Format halt

Comments When a halt statement is encountered, the macro stops
immediately. If there is a related parent macro, it terminates also.
212 halt (statement)

Example if not online then halt

In this example, the macro stops executing if the session is not
connected to the host.

See Also end

Note: To stop a running macro using Accessory Manager, click
Stop CASL Macro from the Tools menu.

Chapter 6 CASL Language

header (system variable)

Use header to define the header to use when printing from
Accessory Manager.

Format header = string

Comments string can be a any valid string expression. You can embed
header (system variable) 213

special characters in the string to print the date, time, and so on.

Example header = "Printed using the " + description ...
 + " session."

In this example, the specified string is assigned to header .

See Also footer

Chapter 6 CASL Language

hex (function)

Use hex to convert an integer to a hexadecimal string.

Format x$ = hex(integer)

Comments hex returns a string giving the hexadecimal representation of
integer . If integer is between 0 and 65,535, the string is 4
214 hex (function)

characters long; otherwise, it is 8 characters long.

Example print hex(32767)

In this example, the macro displays the hexadecimal equivalent of
the integer 32,767.

Chapter 6 CASL Language

hide (statement)

Use hide to minimize the session window.

Format hide

Comments This statement minimizes the session window. To minimize the
Accessory Manager application window, use the minimize
hide (statement) 215

statement.

Example hide

See Also minimize, show, zoom

Chapter 6 CASL Language

hideallquickpads (statement)

The hideallquickpads statement is supported only for
backward compatibility. Refer to “unloadallquickpads
(statement)” on page 328.
216 hideallquickpads (statement)

Chapter 6 CASL Language

hidequickpad (statement)

The hidequickpad statement is supported only for backward
compatibility. Refer to “unloadquickpad (statement)” on page 329.
hidequickpad (statement) 217

Chapter 6 CASL Language

hms (function)

Use hms to return a string in a time format.

Format x$ = hms(integer [, time_type])

Comments hms converts integer to a string in any one of a number of time
formats. integer is a number expressed in tenths of seconds, the
218 hms (function)

same unit of time CASL uses for systime .

time_type is a value that controls the format returned. It
defaults to 0. The following table shows valid values for
time_type and the resulting time format:

Example 1 print hms(300011)

In this example, the macro displays the time.

Example 2 print hms(systime, 6)

In this example, the macro displays the number of ticks that
Accessory Manager has been active in the 0h0m0s format.

See Also systime

Hexadecimal Decimal 300011 Format 101 Format

0x00 0 8:20:01.1 0:00:10.1

0x01 1 8:20:01.1 10.1

0x02 2 8:20:01 0:00:10

0x03 3 8:20:01 10

0x04 4 8h20m1.1s 0h0m10.1s

0x05 5 8h20m1.1s 10.1s

0x06 6 8h20m1s 0h0m10s

0x07 7 8h20m1s 10s

Chapter 6 CASL Language

homedir (system variable)

Use homedir to specify the drive and directory where Accessory
Manager is installed.

Format homedir

Comments This is a read-only string variable. You can use it as an argument
homedir (system variable) 219

for another function or statement, or you can assign the value of
homedir to a variable you create.

Example 1 chdir homedir

In this example, the macro changes the active directory to the
Accessory Manager directory.

Example 2 run "winhelp.exe " + homedir + "\accmgr32.hlp"

In this example, the value of homedir is concatenated with the
strings before and after it.

Example 3 mydir = homedir

In this example, the value of homedir is assigned to another
variable. Because the new variable is not read-only, you can
manipulate its value.

See Also chdir, curdir

Chapter 6 CASL Language

if...then...else (statements)

Use if...then...else to control program flow based on the
value of an expression.

Format if expression then
statement group ...

[else statement group]
220 if...then...else (statements)

Comments expression can be any type of numeric, string, or boolean
expression. It can also be a combination of numeric, string, and
boolean expressions connected with logical operators such as or ,
and , or not . expression must logically evaluate to either true
or false . Integers do not have to be explicitly compared to 0, but
strings must be compared to produce a true /false value.

For example, the following values evaluate logically to true :

1
1 = 1
1 = (2-1)
"X" = "X"
"X" = upcase("x")

The following conditions evaluate to false :

0
1 - 1
1 = 2
"X" = "Y"

then specifies the statement to perform if expression is true .
then must appear on the same line as the if with which it is
associated, as shown in the following example:

if done = true then
print "Done!"

else specifies an optional statement to perform if expression is
not true . Each else matches the most recent unresolved if .

Blank lines are not allowed within a then...else statement
group. If you want to place blank lines in the then...else
statement group to make the text more readable, use braces ({ })
to enclose a series of statements.

Chapter 6 CASL Language

Example 1 label ask
integer user_choice
input user_choice
if user_choice = 1 then

print "Choice was 1." else
if user_choice = 2 then

print "Choice was 2." else goto ask

This example shows how to nest if statements in other if
statements.
if...then...else (statements) 221

Exampe 2 if choice = 1 then print "That was 1." : alarm

This example shows how to specify multiple statements after an
if statement. In this case, the print and alarm statements are
performed only if choice equals 1.

Example 3 if choice=1 or choice=2 then print "One or two."

if online and (choice=1) then print "We're OK."

if x=1 or (x=2 and y<>9) then ...

These three examples show how to specify multiple conditions in
an if...then statement. If the order in which the conditions are
evaluated is important, use parentheses to force the order, as
shown in the second and third examples.

Example 4 if track(1) then
{
 bye
 wait 8 minutes
 print "Eight minutes have elapsed."
 end
}

This example shows how to use braces to indicate a series of
statements in an if...then contruct. This can make if...then
statements easier to read.

Example 5 if x then { if y then a } else b

This example shows how to use braces to denote the then with
which an else should be associated.

Chapter 6 CASL Language

include (compiler directive)

Use include to include an external file in your macro.

Format include " filename "

Comments include is a compile-time directive. It is normally used to include
a source file of commonly used procedures and subroutines in a
222 include (compiler directive)

macro.

filename is required and must be the name of an existing file
containing CASL language elements. If a file extension is omitted,
.XWS is assumed.

include does not include the same file more than once during
compilation.

Example include "myprocs"

In this example, the file MYPROCS.XWS is included in the macro.

See Also chain, do, func...endfunc, proc...endproc

Chapter 6 CASL Language

inject (function)

Use inject to return a string with some characters changed.

Format x$ = inject(" old_string ", " repl_string " ...
[, integer])

Comments inject creates a new character string by replacing part of
inject (function) 223

old_string with the characters in repl_string , beginning at
the first character in integer . The resulting string is the same
length as old_string .

old_string cannot be null. If repl_string is too long, it is
truncated.integer must be in the range of 1 <= integer <=
length of old_string . If integer is omitted, the first character
position is assumed.

Example 1 print inject("ACTMGR32.EXE", "C", 3)

In this example, the T in ACTMGR32.EXE is changed to a C and
the result is displayed.

Example 2 dog_name = inject("xido", "F")

In this example, the x in xido is changed to an F and the result is
stored in dog_name.

See Also insert

Chapter 6 CASL Language

inkey (function)

Use inkey to return the value of a keystroke.

Format x = inkey

Comments inkey tests for keystrokes without stopping the macro to wait for
a keystroke. This is useful if you want to check for a keystroke
224 inkey (function)

while performing other operations.

inkey returns the ASCII value (0–255 decimal) of the key pressed
for the printable characters and a special value for the arrow keys,
function keys, and special purpose keys (shown in the following
table):

If no keystroke is waiting, inkey returns 0.

To clear the keyboard buffer before testing for a keystroke, use the
following code:

while inkey : wend

Keyboard Key Value

F1 to F10 1025 to 1034

Shift+F1 to Shift+F10 1035 to 1044

Ctrl+F1 to Ctrl+F10 1045 to 1054

Alt+F1 to Alt+F10 1055 to 1064

Up Arrow 1281

Down Arrow 1282

Left Arrow 1283

Right Arrow 1284

Home 1285

End 1286

Page Up 1287

Page Down 1288

Insert 1297

Delete 1298

Chapter 6 CASL Language

If the key is important, store it in a variable, and then test the
variable as shown in the following example:

x = inkey
if x <> 0 then ...

To make the user press Esc so the macro can continue, use the
following code:

print at 0, 0 , "Press Esc";
while inkey <> 27
inkey (function) 225

wend

Example 1 if inkey then end

In this example, the macro ends if any key is pressed.

Example 2 while not eof(file1) and inkey <> 27 ...

In this example, a task is performed while the end-of-file marker
has not been reached and Esc is not pressed.

See Also input, stroke

Chapter 6 CASL Language

input (statement)

Use input to accept input from the keyboard.

Format input variable

Comments variable is required, and can be any type of numeric or string
variable. You can use the backspace key to edit input.
226 input (statement)

Example input username

In this example, the data in username is accepted by the macro.

See Also inkey

Chapter 6 CASL Language

inscript (function)

Use inscript to check the labels in a macro.

Format x = inscript(expression)

Comments inscript uses expression to check for the presence of a
particular label in a macro. The value returned is true if
inscript (function) 227

expression is a label in the currently running macro, false if it
is not. expression must be a string.

Example if inscript("HA_" + user_input) then ...

In this example, the macro tests for the presence of the specified
label.

See Also enlabels, label

Note: The genlabels compiler directive must be on for this
function to work properly.

Chapter 6 CASL Language

insert (function)

Use insert to return a string with some characters added.

Format x$ = insert(" old_string ", " insert_string " ...
[, integer])

Comments insert creates a new character string by adding the characters in
228 insert (function)

insert_string at the integer character position in
old_string . The length of the resulting string is the combined
length of old_string and insert_string .

old_string cannot be null. integer must be in the range of
1 <= integer <= length of old_string . If integer is
omitted, the first character position is assumed.

Example 1 print insert("ACMGR32.EXE", "C", 2)

In this example, the macro inserts a C in the second position of
ACMGR32.EXE and displays the result.

Example 2 dog_name = insert("ido", "F")

In this example, an F is inserted in the first position of ido and
the result is stored in dog_name.

See Also inject

Chapter 6 CASL Language

instr (function)

Use instr to return the position of a substring within a string.

Format x = instr(string , sub_string [, integer])

Comments instr reports the position of sub_string in string starting its
search at character integer . If integer is omitted, the search
instr (function) 229

begins at the first character. If sub_string is not found within
string , 0 is returned.

instr can be used within a loop to detect the presence of a
character that you want to change to another character. The
following code fragment expands the tab characters, which some
text editors automatically embed in lines of text.

tb=chr(9)
t=instr(S, tb)
while t

s=left(S, t-1) + pad("", 9-(t mod 8)) + ...
mid(S, t+1)

t=instr(S, tb)
wend

Example 1 dog_place = instr("Here, Fido!", "Fido")

In this example, the substring Fido is found in position 7 of the
string and the result is returned in dog_place .

Example 2 if instr(fname, ".") = 0 then
fname = fname + ".XWS"

In this example, the macro looks for the presence of the file
extension for fname . If an extension delimiter (.) is not found, the
extension is added.

Chapter 6 CASL Language

intval (function)

Use intval to return the numeric value of a string.

Format x = intval(string)

Comments intval returns an integer; it evaluates string for its numerical
meaning and returns that meaning as the result. Leading white-
230 intval (function)

space characters are ignored, and string is evaluated until a
non-numeric character is encountered.

The macro language is quite flexible as to the number base
(decimal or hexadecimal) used; end string with an h if it is
hexadecimal, or k if it is decimal. (k is for kilobytes, so 1k = 1024).

A hexadecimal string cannot begin with an alphabetic character.
If the string does not start with a numeric character, place a 0 at
the beginning of the string.

The characters that have meaning to the intval function are 0
through 9, a through f, A through F, h, H, b, B, o, O, q, Q, k, K, and
hyphen (-).

Example num = intval(user_input_string)

In this example, user_input_string is converted to an integer
and returned in num.

See Also str, val

Chapter 6 CASL Language

jump (statement)

The jump statement, which is a synonym for the goto statement,
is supported only for backward compatibility. For more
information, refer to “goto (statement)” on page 210.
jump (statement) 231

Chapter 6 CASL Language

keys (system variable)

Use keys to read or set the keyboard map for the current session.

Format keys = string

Comments keys specifies the name of keyboard map for the current session.
You have to specify the full DOS path (drive and directory) where
232 keys (system variable)

the file is located, as well as the .EKM file extension.

Example 1 keys = "C:\INFOCN32\ACCMGR32\HSW.EKM"

In this example, the keyboard map for the session is changed to
HSW.EKM.

Example 2 if keys = "C:\INFOCN32\ACCMGR32\HSW.EKM" then ...

In this example, the macro performs some action if the keyboard
map for the current session is HSW.EKM.

Chapter 6 CASL Language

label (statement)

Use label to specify a named reference point in a macro file.

Format label labelname

Comments labelname can be almost any printable characters. (Do not use
reserved words or special characters as a label name.)
label (statement) 233

Labels are used in macros to provide a means of identifying a
particular line in a program.

Example label ask
input user_choice
if user_choice = 1 then

print "Choice = 1."
return

In this example, the label statement defines the location of the
ask subroutine.

See Also gosub...return, goto

Chapter 6 CASL Language

left (function)

Use left to return the left portion of a string.

Format x$ = left(string [, integer])

Comments left returns the leftmost integer characters in string . If
integer is not specified, the first character in string is
234 left (function)

returned. If integer is greater than the length of string , then
string is returned.

Example 1 dog_name = left("Fidox", 4)

In this example, left returns Fido .

Example 2 print left(long_string, 78)

In this example, the first 78 characters of long_string are
displayed.

Example 3 reply left(dat_rec, 24)

In this example, the first 24 characters of dat_rec are sent to the
host.

See Also mid, right, slice, strip, subst

Chapter 6 CASL Language

length (function)

Use length to return the length of a string.

Format x = length(string)

Comments Since CASL allows strings of up to 32,767 characters, length
always returns integers in the range of 0 <= length of string
length (function) 235

<= 32767 . length returns 0 if string is null.

Example 1 print length(dog_name), dog_name

In this example, the macro displays both the length of the string
dog_name and the contents of the string.

Example 2 if length(txt_ln) then reply txt_ln
else reply "-"

In this example, the macro sends the contents of txt_ln to the
host if txt_ln contains data. Otherwise, the macro sends a dash
to the host.

Chapter 6 CASL Language

loadquickpad (statement)

Use loadquickpad to open and display a QuickPad.

Format loadquickpad string

Comments This statement loads the QuickPad specified in string . You do
not have to include the .EQP file extension.
236 loadquickpad (statement)

Example if online then
loadquickpad "apad"

In this example, the QuickPad named APAD.EQP is loaded if the
session is connected to a host.

See Also hideallquickpads, hidequickpad, showquickpad,
unloadallquickpads, unloadquickpad

Chapter 6 CASL Language

loc (function)

Use loc to return the position of the file pointer.

Format x = loc[(filenum)]

Comments loc returns the byte position of the next read or write in a
random file.
loc (function) 237

If filenum is omitted, the default file number is assumed. You
can set the default file number using the definput system
variable.

This function is valid only for files opened in random mode.

Example 1 print loc(1)

In this example, the macro displays the location of the input/
output pointer for file number 1.

Example 2 if loc(1) = 8k then print "Eight kilobytes read."

In this example, the macro prints the specified phrase if the file
pointer is 8 KB into the file.

See Also definput, open, seek

Chapter 6 CASL Language

lowcase (function)

Use lowcase to convert a string to lowercase letters.

Format x$ = lowcase(string)

Comments lowcase converts only the letters A–Z to lowercase characters.
Numerals, punctuation marks, and notational symbols are
238 lowcase (function)

unaffected.

lowcase is useful for testing string equivalence since it makes the
string case-insensitive.

Example 1 print "Can't find "; lowcase(fl_name)

In this example, the macro displays a phrase that contains a file
name in lowercase letters.

Example 2 if lowcase(password) = "secret" then ...

In this example, the macro takes some action if the contents of
password is secret .

See Also upcase

Chapter 6 CASL Language

lprint (statement)

Use lprint to send text to a printer.

Format lprint [item] [{ , | ; } [item]] ... [;]

Comments lprint can take any item or list of items, including integers,
strings, and quoted text, separated by semicolons or commas.
lprint (statement) 239

item can be either an expression to be printed, the EOP keyword,
or the EOJ keyword. EOP indicates that printing should continue
on another page. EOJ indicates the end of the print job; that is, the
print spooler can now send the data to the printer. If your macro
ends without executing an lprint EOJ , the macro processor
executes one for you. If item is omitted, a blank line is printed.

If the items in the list are separated by semicolons, they are
printed with no space between them. If they are separated by
commas, they are printed at the next tab position.

A trailing semicolon at the end of the lprint statement causes
the statement to be printed without a carriage return. This is
useful when you want to print something immediately after the
statement on the same line.

Example 1 lprint "This is being sent to the printer."

This example shows how to print a simple phrase.

Example 2 lprint "There's no carriage return after this.";

This example shows how to suppress a carriage return.

Example 3 lprint "Current protocol is " ; protocol

This example shows how to print two phrases with no space
between them.

Example 4 lprint "Hello, " , name$

This example shows how to print a phrase followed by an
automatic tab to name$.

See Also print

Chapter 6 CASL Language

match (system variable)

Use match to check the string found during the last wait or
watch statement.

Format x$ = match

Comments match returns the most recent string for which the macro was
240 match (system variable)

watching or waiting (up to 512 characters). For example, if the last
wait or watch was looking for a keystroke, match returns the
string value of the key pressed.

Use match only when the session is online.

Example wait 1 minute for "Login", "ID", "Password"
case match of

"Login": reply logon
"ID": reply userid
"Password": reply password

endcase

In this example, the macro waits up to one minute for the host to
send a prompt. The macro then uses the case...endcase
construct to determine what response to send to the host.

See Also wait, watch...endwatch

Chapter 6 CASL Language

max (function)

Use max to return the greater of two numbers.

Format x = max(number1 , number2)

Comments max compares two numbers and returns the greater of the two.
max (function) 241

Example integer a, b, c
a = 1
b = 2
c = max(a, b)

In this example, the macro declares three variables as integers
and initializes two of them. Then it uses the max function to
compare the integers a and b and returns the greater of the two in
c . The result is c = 2 .

See Also min

Chapter 6 CASL Language

maximize (statement)

Use maximize to enlarge the Accessory Manager application
window to full screen size.

Format maximize

Comments maximize lets you maximize the Accessory Manager application
242 maximize (statement)

window. To maximize a session window, use the zoom statement.

Example maximize

See Also minize, move, restore, size, zoom

Chapter 6 CASL Language

mid (function)

Use mid to return the middle portion of a string.

Format x$ = mid(string , start [, len])

Comments mid returns the middle portion of string beginning at start ,
and returns len bytes. If len is omitted, or if start plus len is
mid (function) 243

greater than the length of string , then the rest of the string is
returned.

Example 1 dog_name = mid("Here, Fido, here boy!", 7, 4)

In this example, mid returns Fido in dog_name.

Example 2 if mid(fname, 2, 1) = ":" then dv = left(fname, 1)

In this example, dv is assigned the first character in fname if the
second character in fname is a colon.

See Also left, right, slice, strip, subst

Chapter 6 CASL Language

min (function)

Use min to return the lesser of two numbers.

Format x = min(number1 , number2)

Comments min compares two numbers and returns the lesser of the two.
244 min (function)

Example integer a, b, c
a = 1
b = 2
c = min(a, b)

In this example, the macro declares three variables as integers
and initializes two of them. Then it uses the min function to
compare the integers a and b and returns the lesser of the two in
c . The result is c = 1 .

See Also max

Chapter 6 CASL Language

minimize (statement)

Use minimize to reduce the Accessory Manager application
window to an icon.

Format minimize

Comments minimize lets you minimize the Accessory Manager application
minimize (statement) 245

window. To minimize a session window, use the hide statement.

Example minimize

See Also hide, maximize, move, restore, size

Chapter 6 CASL Language

mkdir (statement)

Use mkdir to create a new subdirectory.

Format mkdir directory

Comments directory must be a string expression containing a valid
directory name.
246 mkdir (statement)

An error occurs if directory or a file with the same name as the
one you specified for the directory already exists.

You can also use the abbreviation md for this statement.

Example 1 mkdir "C:\INFOCN32\ACCMGR32\FILE"

In this example, the macro creates a directory called FILE in the
C:\INFOCN32\ACCMGR32 directory.

Example 2 mkdir "FILE"

In this example, the macro creates a subdirectory called FILE
under the current drive and directory.

See Also rmdir

Chapter 6 CASL Language

mkint (function)

Use mkint to convert strings to integers.

Format x = mkint(string)

Comments Use mkstr to convert 32-bit integers into 4-byte strings for
compact storage in a file. When you read the file, use mkint to
mkint (function) 247

convert the strings to integers.

Example get #1, 4, a_string : a_num = mkint(a_string)

In this example, the get statement reads four bytes of data from
the file with file number #1 and stores the bytes in a_string .
Then the mkint function converts the data in a_string to an
integer and stores the result in a_num.

See Also mkstr

Chapter 6 CASL Language

mkstr (function)

Use mkstr to convert integers to strings for more compact file
storage.

Format x$ = mkstr(integer)

Comments Use mkstr to convert 32-bit integers into 4-byte strings for
248 mkstr (function)

compact storage in a file. When you read the file, use mkint to
convert the strings to integers.

Example 1 print mkstr(65), mkstr(6565), mkint("A")

In this example, mkstr converts 65 and 6565 to strings, and
mkint converts A to its equivalent integer value.

Example 2 put #1, mkstr(very_big_num)

In this example, the mkstr function converts very_big_num to a
string, and the put statement writes the string to a file.

See Also mkint

Chapter 6 CASL Language

move (statement)

Use move to move the Accessory Manager application window to a
new location on the screen.

Format move x, y

Comments This statement moves the upper left corner of the Accessory
move (statement) 249

Manager application window to the location specified by x and y .
x and y are the pixel coordinates of the columns and rows on the
screen. The range of coordinates depends on the video hardware
used.

Example 1 move 2, 30

This example shows how to move the application window to
column 2, row 30.

Example 2 move x, y

In this example, the macro moves the application window to the
location defined by the x and y variables.

See Also maximize, minimize, restore, size

Chapter 6 CASL Language

name (function)

Use name to get the name of the current session.

Format x$ = name

Comments name returns the name of the current session. The name of the
session is the same as the .ADP file name and appears in the title
250 name (function)

bar of the session window.

Example if name = "ansi" then go

In this example, if the name of the session is ANSI, the macro
connects the session to the host.

Chapter 6 CASL Language

netid (system variable)

Use netid to read or set a network identifier for the current
session.

Format netid = string

Comments netid sets and reads the network address associated with the
netid (system variable) 251

current session. The netid is limited to 40 characters.

Example netid = "CIS02"

In this example, netid is set to CIS02.

Note: To set this parameter using Accessory Manager, click
Session Preferences from the Options menu, click the CASL
Macro tab, and type the desired string in the Network ID text
box.

Chapter 6 CASL Language

new (statement)

Use new to create or open a session.

Format new [filename]

Comments filename is the name of a session (.ADP file). You do not have to
include the .ADP file extension.
252 new (statement)

If you include filename , new opens the specified session. If you
omit filename , the New Session Wizard runs, and you can create
a session.

If you include filename and you receive an error message
indicating that the file could not be found, specify the drive and
directory where the session is located and try again.

Example new "C:\INFOCN32\ACCMGR32\TCPA_1"

Chapter 6 CASL Language

nextchar (function)

Use nextchar to return the character waiting at the
communication device.

Format x$ = nextchar

Comments nextchar returns the character waiting at the communication
nextchar (function) 253

device. If no character is waiting, nextchar returns a null string
and processing continues.

The nextchar function clears the current character from the
device. If you want to retain the character, store it in a variable
and then test the variable.

Note that nextchar returns a string, while inkey returns an
integer.

Example 1 /* The terminal assumes full duplex host. */
string nchar
integer kpress
while kpress <> 27

nchar = nextchar
if not null(nchar) then print nchar;
kpress = inkey
if kpress then reply chr(kpress);

wend

This example uses the nextchar and inkey functions to get
characters from the device and the keyboard, respectively.

Example 2 nchr = nextchar : if null(nchr) then
gosub a_label

In this example, the macro tests whether the next character is a
blank; if it is, control is passed to the subroutine a_label .

See Also inkey, nextline

Chapter 6 CASL Language

nextline (statement)

Use the nextline statement to get a line of characters from the
communication port.

Format nextline string [, time_expr [, maxsize]]

Comments nextline accumulates the characters that arrive at the
254 nextline (statement)

communication port (delimited by carriage returns) and returns
them in the variable string .

If a carriage return has not been received since the last nextline ,
the program accumulates characters until one of the following
occurs:

■ A carriage return is encountered.

■ The amount of time specified in time_expr is reached.

■ maxsize characters have accumulated.

When one of these conditions is met, nextline returns the
resulting string and processing continues. If no characters have
been received, nextline returns a null string.

time_expr is the number of seconds to wait for the next carriage
return or the next character. This number can be an integer or a
real (floating point) number. If time_expr is reached between the
receipt of characters, the characters accumulated to that point are
returned and macro execution continues. You can use the
timeout system variable to determine if the value in time_expr
was exceeded. If time_expr is omitted, nextline accumulates
characters until a carriage return is encountered or maxsize
characters have accumulated.

maxsize is the number of bytes to accumulate before continuing if
a carriage return is not encountered. The default (and maximum)
is 255 bytes.

A line feed following a carriage return is ignored.

Chapter 6 CASL Language

Example 1 nextline new_string

In this example, nextline waits for characters to come in from
the port and stores them in the script’s new_string variable.

Example 2 nextline big_string, 5.5, 100
if timeout then bye

In this example, nextline waits up to 5.5 seconds for as many as
100 characters or a carriage return. The nextline statement
nextline (statement) 255

terminates if the specified conditions are not met within the
specified 5.5-second time period. The timeout system variable is
used to determine whether or not nextline timed out.

See Also nextchar, nextline (function), timeout

Chapter 6 CASL Language

nextline (function)

Use the nextline function to return a line of characters from the
communication port.

Format x$ = nextline[(delay [, maxsize])]

Comments nextline looks for a carriage return and then returns the string
256 nextline (function)

of characters that have accumulated at the communication port.

If a carriage return has not been received since the last nextline ,
the characters accumulate until one of the following occurs:

■ A carriage return is encountered.

■ The amount of time specified in delay is reached.

■ maxsize characters have accumulated.

The resulting string is then returned and processing continues. If
no characters have been received, a null string is returned.

delay is the number of seconds to wait for the next carriage
return or the next character. This number can be an integer or a
real (floating point) number. If delay is reached between the
receipt of characters, the characters accumulated to that point are
returned and the macro continues executing. By default, the
nextline function waits indefinitely.

maxsize is the number of bytes to accumulate before continuing if
a carriage return is not encountered. The default is 255 bytes.

A line feed following a carriage return is ignored.

Chapter 6 CASL Language

Example 1 new_string = nextline

In this example, nextline waits for characters to come in from
the port and stores them in the script’s new_string variable.

Example 2 big_string = big_string + nextline(15, 1024)
if timeout then bye

In this example, nextline waits up to 15 seconds between
characters for as many as 1,024 characters or a carriage return.
nextline (function) 257

The nextline function terminates if a carriage return is received,
1,024 characters are received, or 15 seconds elapse between
characters. The characters are accumulated in the variable
big_string .

See Also nextchar, nextline (statement), timeout

Chapter 6 CASL Language

null (function)

Use null to determine if a string is null.

Format x = null(string)

Comments null returns true if string is null; otherwise, it returns false .
(Null strings have no length or contents.)
258 null (function)

The following code fragments have equivalent results when
testing the string a_string :

if null(a_string) then ...
if length(a_string) = 0 then ...

or

if length(a_string) then ...
if not null(a_string) then ...
if length(a_string) > 0 then ...

Example print null("Fido"), null("")

In this example, the null function displays false for "Fido " and
true for "".

See Also length

Chapter 6 CASL Language

octal (function)

Use octal to return a number as a string in octal format.

Format x$ = octal(integer)

Comments octal returns a string containing the octal (base 8)
representation of integer . The string is 6 or 11 bytes long,
octal (function) 259

depending on the value of integer . The following table shows
possible integer ranges and the corresponding byte length.

Example print octal(32767)

This example show how to print the octal equivalent of 32,767
decimal.

Integer Ranges Byte Length

0–65,535 6

65,536–2,147,483,647 11

Chapter 6 CASL Language

off (constant)

Use off to set a variable to logical false.

Format x = off

Comments off is always logical false. Like its complement on , off exists as a
way to set variables.
260 off (constant)

Example echo = off

In this example, echo is set to off.

See Also false, on, true

Chapter 6 CASL Language

on (constant)

Use on to set a variable to logical true.

Format x = on

Comments on is always logical true. Like its complement off , on exists as a
way to set variables.
on (constant) 261

Example echo = on

In this example, the variable echo is set to on.

See Also false, off, true

Chapter 6 CASL Language

online (function)

Use online to determine whether a connection is successful.

Format x = online

Comments online returns true or false , depending on whether the
session is online to another computer. Some macro statements and
262 online (function)

functions (such as reply) are inappropriate unless you are online
when they are executed. You can use online to control program
flow.

Example 1 while online ...

In this example, the macro performs some task while the session
is connected to the host.

Example 2 if not online then new "C:\INFOCN32\ACCMGR32\TCPA_1"

In this example, if the session is not online, the macro opens the
specified session.

Chapter 6 CASL Language

ontime (function)

Use ontime to determine the number of ticks that the session has
been online.

Format x = ontime

Comments ontime returns the number of ticks that the session has been
ontime (function) 263

online. (One tick is one tenth of a second.) You can use ontime to
call accounting routines, random number routines, and similar
routines.

ontime is set to zero when a connection is established and stops
counting when the session is disconnected.

To determine the number of ticks that Accessory Manager has
been active, use the systime function.

Example 1 print ontime

In this example, the macro displays the value in ontime .

Example 2 if ontime/600 > 30 then ...

In this example, the macro tests the result of a mathematical
computation and takes some action if the result is true.

See Also online, systime

Chapter 6 CASL Language

open (statement)

Use open to open a disk file.

Format open mode filename as # filenum

Comments Before a macro can read from or write to a file, the file must be
opened. open opens filename using filenum for the activities
264 open (statement)

allowed by mode.

mode can be any of the following options:

filename can be any legal file name. Drive and directory names
are allowed, but wild cards are not.

filenum must be in the range 1 <= filenum <= 8 .

You can open a file in only one mode at a time.

Example open random "PATCH.DAT" as #1

In this example, the macro opens PATCH.DAT in random mode
with a file number of 1.

See Also get, loc, put, read, read line, seek, write, write line

Option Description

random Allows input and output to the file at any location using seek ,
get , put , and loc . If the file does not exist, it is created.

input Allows read-only sequential access of an existing file using
read for comma-delimited ASCII records and read line
for lines of text. If the file does not exist, a run-time error occurs.

output Allows write-only sequential access to a newly created file
using write for comma-delimited ASCII records and write
line for lines of text. If the file exists, it is deleted and a new
one is created.

append Allows write-only sequential access to a file using write for
comma-delimited ASCII records and write line for lines
of text. If the file exists, the new data is appended to the end of
it; otherwise, a new file is created.

Chapter 6 CASL Language

pack (function)

Use pack to return a condensed string.

Format x$ = pack(string [, wild [, integer]])

Comments pack returns string with duplicate occurrences of the characters
in wild compressed according to the value of integer .
pack (function) 265

If wild is omitted, it defaults to a space.

integer specifies how consecutive characters in string are
treated. The following integer values are valid:

Example 1 pack("aabcccdd", "abc", 0)

In this example, pack returns add because aabccc is compressed
to the first occurrence of the first character (a).

Example 2 pack("aabcccdd", "abc", 1)

In this example, pack returns abcdd because only identical
consecutive characters are compressed.

Example 3 pack("HELLO WORLD!", "L", 1)

In this example, pack returns HELO WORLD! because the two Ls
in HELLO are compressed to one L.

Value Result

0 All consecutive characters in string are compressed to a single
occurrence of the first character. If integer is omitted, 0 is the
default.

1 Only identical consecutive characters in string are compressed.

Chapter 6 CASL Language

pad (function)

Use pad to return a string padded with spaces, zeros, or other
characters.

Format x$ = pad(orig_str , len_int [, pad_str ...
[, where_int]])
266 pad (function)

Comments pad can expand, truncate, or center orig_str to length len_int
by adding multiple occurrences of pad_str on one or both sides as
directed by where_int .

pad is essentially the opposite of the strip function, which
removes certain characters from a string.

Orig_str can be any string.

len_int is the number of characters that the returned string
should be. If len_int is shorter than the length of orig_str ,
orig_str is truncated to len_int characters, with the
truncation occurring on the right side of the string.

pad_str can be any character. If pad_str is omitted, it defaults
to a space.

The value of where_int indicates where to place the padding in
the string (as shown in the following table.) If where_int is
omitted, it defaults to 1.

This value Places the pads here

1 On the right side

2 On the left side

3 On both sides, centering orig_str in a field len_int
characters long

Chapter 6 CASL Language

Example 1 print pad("Hi", 6); pad("Hi", 6, "-"); ...
pad("Hi", 4, "+", 2)

In this example, the first pad function adds four spaces to the
right of Hi to expand the string to six characters. The second pad
function adds four hyphens to the right of Hi to expand the string
to six characters. The third pad function adds two plus signs to
the left of Hi to expand the string to four characters.

Example cntrd_string = pad("Hello!", 78, "*", 3)
pad (function) 267

In this example, the pad function centers Hello! between two
sets of 36 asterisks and returns the result in cntrd_string .

See Also strip

Chapter 6 CASL Language

passchar (system variable)

Use passchar to specify the character to display in a text box on a
dialog box created using dialogbox...enddialog and the
secret option.

Format passchar = char
268 passchar (system variable)

Comments By default, if you create a dialog box using
dialogbox...enddialog and use edittext with the secret
option, any text that you type in the resulting text box appears as
asterisks on the screen.

Using passchar , you can specify a different character to display.
For example, rather than displaying asterisks, you could display
the plus sign.

Example passchar = "+"

See Also dialogbox...enddialog

Chapter 6 CASL Language

password (system variable)

Use password to read or set a password string for the current
session.

Format password = string

Comments password sets or reads the password associated with the current
password (system variable) 269

session. The password is limited to 40 characters.

Example 1 password = "PRIVATE"

This example shows how to set the password.

Example 2 print password

This example shows how to print the password.

Example 3 reply password

This example shows how to send the password to the host.

Note: To set this parameter using Accessory Manager, click
Session Preferences from the Options menu, click the CASL
Macro tab, and type the desired string in the Password text box.

Chapter 6 CASL Language

perform (statement)

Use perform to call a procedure.

Format perform procedurename [arglist]

Comments perform is an alternate method of calling a procedure. It is like a
combination of a forward declaration and a call. Use it to call
270 perform (statement)

procedures when they are located near the end of the macro.

procedurename is the name of the procedure to call.

arglist is a list of arguments that can be passed to the
procedure. arglist must contain the same number and types of
arguments in the same order as specified in the procedure
declaration. Be sure to separate the arguments with commas.

Example perform some_proc

In this example, the procedure identified by some_proc is called.

See Also proc...endproc

Chapter 6 CASL Language

pop (statement)

Use pop to remove a return address from the gosub return stack.

Format pop

Comments You can use pop in a subroutine to alter the flow of control. pop
removes the top address from the gosub return stack so that a
pop (statement) 271

subsequent return statement returns control to the previous
gosub rather than the calling gosub .

When you use the pop statement, the logic of your macro becomes
somewhat convoluted. Therefore, use this statement only on those
occasions where it cannot be avoided.

If the return stack is empty when the pop statement is
encountered, an error occurs.

Example pop

See Also gosub...return

Chapter 6 CASL Language

press (statement)

Use press to send a series of keystrokes to the terminal emulator.

Format press [string [, string] ...] [;]

Comments press sends the string expression string to the emulator.
272 press (statement)

string can be plain text, special keystrokes (such as F1), or
terminal keystrokes that vary, depending on the type of terminal
that the session is emulating.

Be sure to enclose special keystrokes and terminal emulation
keystrokes in angle brackets, such as <F1> and <Transmit>. You
can also use the ASCII value for a keystroke, such as <8> to
represent the backspace. (Additional keystroke values are listed in
“inkey (function)” on page 224.) Characters that are not enclosed
in angle brackets are treated as plain text.

To suppress a trailing carriage return, use a semicolon at the end
of the statement. You usually need the semicolon with an
InterCom session. Omitting the semicolon (and thus sending a
carriage return after the keystroke) can cause problems. For
example, if you’re sending a communication keystroke, the
carriage return generates a beep to indicate that the carriage
return is being canceled. If you’re sending a cursor movement
keystroke, the keystroke is performed, but then the carriage
return moves the cursor to the first column.

press differs from reply in that reply sends its output directly
to the host, while press passes its output through the terminal
emulator. reply does not honor any terminal keystrokes that are
part of the terminal emulator; press does honor such keystrokes.

This statement is valid only when the session is online.

Chapter 6 CASL Language

Example 1 keys_out = "<up><left>" : press keys_out ;

In this example, the Up Arrow and Left Arrow keystrokes are
assigned to the variable keys_out , which is sent using the press
statement.

Example 2 press "AM";

In this example, the macro sends the string AM without a trailing
carriage return.
press (statement) 273

Example 3 press "<8>" ;

In this example, the macro sends a backspace.

See Also reply

Chapter 6 CASL Language

print (statement)

Use print to display text in a session window.

Format print [item] [{ , | ; } [item]] ... [;]

Comments item is one of the following:

{ expression | at row , col }
274 print (statement)

The keyword at specifies a position in the session window; if it is
omitted, printing begins at the current cursor position.

item can be any expression or list of expressions, including
integers, strings, and quoted text, separated by semicolons or
commas.

If the items in the list are separated by semicolons, they are
printed with no space between them. If the items are separated by
commas, they are printed at the next tab position. If no expression
is included, a blank line is printed.

A trailing semicolon at the end of the print statement causes the
item to be printed without a carriage return. This is useful when
you want to print something else on the same line, or when
printing on the last line of a session window.

print can be abbreviated as a question mark (?).

Example 1 print "The current protocol is " ; protocol

In this example, the macro prints the text The current
protocol is followed by the name of the selected protocol.

Example 2 print "This is all printed on the ";
print "same line."

In this example, the macro prints the text on a single line.

Example 3 print date , time(-1)

In this example, the macro prints the date and the current time,
with the time starting at the next tab stop.

See Also grab, printer

Chapter 6 CASL Language

printer (system variable)

Use printer to send screen output to a printer.

Format printer = option

Comments In Accessory Manager, clicking Capture from the File menu
initiates a continuous capture of data received from the host. The
printer (system variable) 275

printer statement performs a similar function, controlling
whether data is being captured at any particular time.

When you click Capture from the File menu in Accessory
Manager, you can specify whether to send the data to a printer or
file. In CASL, the destination is determined by the command. Use
printer to send a continuous stream of data to a printer; use
capture to send the data to a file.

For the printer system variable, option is one of the following:

The settings specified on the Capture Options and Advanced
Capture Options dialog boxes within Accessory Manager
determine how the printing operates. To view these dialog boxes,
make sure that Show Capture Dialog When Start Capture is
selected on the Global Preferences dialog box. Then click Capture
from the File menu, and click Options on the Capture Printer
Settings dialog box.

Example printer = off

This example shows how to turn printing off.

See Also capture, grab

Option Result

on Accessory Manager begins sending data from the host to a
printer.

off Accessory Manager stops sending data from the host to a
printer.

Chapter 6 CASL Language

proc...endproc (procedure declaration)

Use proc...endproc to define and name a procedure.

Format proc name [takes [type] argument
[, [type] argument]...]
...
...

endproc
276 proc...endproc (procedure declaration)

Comments A procedure is a group of statements that can be predefined in a
macro and later referred to by name.

name is the name given to the procedure. It must be unique within
the macro.

takes is optional and introduces a list of arguments that are
passed to the procedure.

type is optional and indicates the type of argument. The
arguments are assumed to be strings unless otherwise specified.

argument is any argument to the procedure. Arguments are
optional, and procedures can take a number of arguments. If
arguments are included, you must use the same number and type
of arguments in both the procedure and the statement that calls
the procedure.

endproc ends the procedure. To leave a procedure before the
endproc , use the exit statement to return control to the calling
routine.

Any variable declared within a procedure is local to the procedure.
The procedure can reference variables that are outside the
procedure, but variables within the procedure cannot be
referenced outside the procedure.

Procedures can contain labels, and the labels can be the target of
gosub...return and goto statements, but such activity must be
wholly contained within the procedure. If you reference a label
inside a procedure from outside the procedure, an error occurs.

You can nest procedures at the execution level; that is, one
procedure can call another. However, you must not nest
procedures at the definition level; one procedure definition cannot
contain another procedure definition.

Chapter 6 CASL Language

You can use forward declarations to declare procedures whose
definition occurs later in the macro. The syntax of a forward
procedure declaration is the same as the first line of a procedure
definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your
procedures near the end of your macro. A procedure must be
declared before you can call it. The forward declaration provides
the means to declare a procedure and later define what the
procedure is to perform.
proc...endproc (procedure declaration) 277

The following format is used for a forward declaration:

proc name [takes arglist] forward

You can use the proc statement to call a procedure in a Windows
Dynamic Link Library (DLL). For more information, refer to
“Calling DLL Functions” on page 77.

Procedures can be in separate files. To include an external
procedure in a macro, use the include compiler directive.

Example 1 proc logon takes string username, ...
string logon_password
watch for

"Enter user ID:" : reply username
"Enter password:" : reply logon_password
key 27 : exit

endwatch
endproc

In this example, username and logon_password are the
procedure arguments. The values of username and
logon_password are passed to the procedure when it is called.
The procedure watches for the appropriate prompts from the host
and responds with one or the other of the arguments. If the Esc
key is received, the procedure exits to the calling routine.

Note: You can also use the perform statement to call a
procedure that is not yet declared.

Chapter 6 CASL Language

Example 2 proc logon takes string username, string ...
logon_password forward

logon "John", "secret"
proc logon takes string username, ...

string logon_password
watch for
"Enter user ID:" : reply username
"Enter password:" : reply logon_password
key 27 : exit

endwatch
278 proc...endproc (procedure declaration)

endproc

In this example, the procedure logon is declared as a forward
declaration. Then it is called.

See Also func...endfunc, exit, include, gosub...return, goto,
perform

Note: For ease of programming, you do not have to supply the
parameters in the actual procedure definition if you use a
forward declaration. For instance, the foregoing example can
also be written as follows:

proc logon takes string username, ...
string logon_password forward

logon "John", "secret"
proc logon

watch for
"Enter user ID:": reply username
"Enter password:": reply logon_password
key 27: exit

endwatch
endproc

Chapter 6 CASL Language

protocol (system variable)

Use protocol to set or read the file transfer protocol.

Format protocol = string

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
protocol (system variable) 279

Comments protocol checks or changes the protocol to use for file transfers.

string can be one of the file transfer protocols listed in the
following table:

For more information about file transfer protocols, refer to
Chapter 7, “Connection, Terminal, and File Transfer Tools.”

Example 1 assume protocol "CANDE"
protocol = "CANDE"

In this example, the CANDE file transfer protocol is loaded.

Example 2 print protocol

In this example, the macro prints the current protocol selection.

See Also assume, device, terminal

This protocol name Loads this file transfer protocol

CANDE CANDE

OS2200 OS2200

MAPPER MAPPER®

NOFT No file transfer protocol

Note: You cannot change to a file transfer protocol that is not
supported by the session’s terminal type. For example, you can
change from CANDE to NOFT, but you cannot change from
CANDE to OS2200, since the former is designed for use with
InterCom, and the latter for use with PEP. Any changes made
using this command are written to the session’s .ADP file.

Chapter 6 CASL Language

put (statement)

Use put to write characters to a random file.

Format put [# filenum ,] string

Comments put writes string to the random file specified by filenum . The
length of string is the number of bytes written to the file.
280 put (statement)

filenum must be an open random file number. If filenum is
omitted, the file number stored in the variable defoutput is
assumed.

Each put advances the file I/O pointer by the number of positions
in string . The put statement does not pad string to a
particular length. (To pad the string, you must use the pad
function). The put statement also does not add quotation marks,
carriage returns, or end-of-file markers.

If the end-of-file marker is reached during the write, the file is
extended.

Example 1 put #1, some_string

In this example, the macro writes some_string to a file with a
file number of 1.

Example 2 put #fileno1, pad(rec, rec_len)

In this example, rec is padded on the right with spaces to expand
the string to rec_len characters, and then rec is written to the
file designated by fileno1 .

See Also defoutput, open, pad, seek

Chapter 6 CASL Language

quit (statement)

Use quit to close a session window.

Format quit

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
quit (statement) 281

Comments quit closes a session window. Unlike the terminate statement,
quit does not close Accessory Manager, even if you use quit to
end the last or only active session.

Example quit

See Also terminate

Chapter 6 CASL Language

quote (function)

Use quote to return a string enclosed in quotation marks.

Format x$ = quote(string)

Comments quote analyzes string and returns it enclosed in quotation
marks to make it compatible with the type of comma-delimited
282 quote (function)

ASCII sequential file input/output used by many applications.

quote encloses any string that contains a comma in double (")
quotation marks.

string cannot contain both single and double quotation marks.

Example print quote("Hello, world!")

In this example, the phrase "Hello, world!" is enclosed in
double quotation marks when it is displayed on the screen.

Chapter 6 CASL Language

read (statement)

Use read to read lines containing comma-delimited fields of
ASCII data in a sequential file.

Format read [# filenum ,] string_var_list

Comments The read statement operates only on files opened in input mode.
read (statement) 283

filenum must be an open input file number. If filenum is
omitted, the default input file number stored in definput is
assumed.

The read statement reads lines containing comma-delimited
fields of ASCII data. Each read puts fields into the members of
string_var_list until either all of the members have had
values assigned or the end-of-file marker is reached. Quotation
marks are automatically stripped. When an end-of-line marker is
reached, it is treated as a comma (delimiter).

To use the read statement, you must have previously defined all
members of string_var_list .

Example read #fileno, alpha, beta, gamma

In this example, the read statement uses file number #fileno to
read fields of ASCII data into the variables alpha , beta , and
gamma.

See Also definput, open, read line

Chapter 6 CASL Language

read line (statement)

Use read line to read lines of text from a sequential file.

Format read line [# filenum ,] string_var

Comments The read line statement operates only on files opened in input
mode.
284 read line (statement)

filenum must be an open input file number. If filenum is
omitted, the default input file number stored in definput is
assumed.

The read line statement reads lines of text from files. Each
read line puts in string_var all the text read, up to the next
carriage-return/line-feed (CR/LF) character or a maximum of 255
characters, whichever comes first. If the end-of-file marker has
already been reached, string_var is null.

To use the read line statement, you must have previously
declared string_var .

Example read line #1, some_text

In this example, the read line statement uses the file number
#1 to read a line of text into the variable some_text .

See Also definput, open, read

Chapter 6 CASL Language

receive (statement)

Use receive to receive a file from the host.

Format receive filename

Comments receive tells Accessory Manager to download a file from the host.
filename is the name of the file to download.
receive (statement) 285

The way receive works depends on the file transfer protocol you
use. For example, some protocols automatically request
information from the host while other protocols require user
intervention to request data.

An error occurs if the statement is executed while the session is
offline.

Example 1 receive fname

In this example, receive downloads the file with the name
assigned to the fname variable.

Example 2 receive "SALES"

In this example, receive downloads a file named SALES.

See Also online, send

Chapter 6 CASL Language

rename (statement)

Use rename to rename a file.

Format rename [some] oldname , newname

Comments This statement renames a file. oldname must be the name of an
existing file and can contain wild cards. If some is included, the
286 rename (statement)

user is prompted for verification before each file is renamed.

Example 1 rename "TEST.XWS", "MAIL.XWS"

In this example, the macro renames the existing file TEST.XWS to
MAIL.XWS.

Example 2 rename FNAME1, FNAME2

In this example, the macro renames the file in the FNAME1
variable to the name in the FNAME2 variable.

Chapter 6 CASL Language

repeat...until (statements)

Use repeat...until to repeat a statement or series of
statements until a given condition becomes true.

Format repeat
...
...
...
repeat...until (statements) 287

until expression

Comments repeat lets you repeat a group of statements until some condition
occurs. until specifies the condition that ends the repeat
condition. expression can be any boolean, numeric, or string
expression.

The loop is executed once before expression is checked. If
expression is false, the loop repeats until expression is true.

The repeat...until construct is a good alternative to the
while...wend construct in those instances where a loop must be
executed at least once before its terminating condition is tested.

Example 1 x = 0
repeat

x = x + 1
print x

until x = 100

In this example, the macro prints numbers from 1 to 100.

Example 2 string guess
print "Guess how to get out of here:"
repeat

input guess
until guess = "Good Bye!"

This example shows how a macro can prompt the user to type a
string and repeat the prompt until the correct string (Good Bye!)
is typed.

See Also while...wend

Chapter 6 CASL Language

reply (statement)

Use reply to send a string of text to the communication device.

Format reply [string [, string] ...] [;]

Comments reply sends one or more strings of text directly to the
communication device. string is a string expression containing
288 reply (statement)

the text to be transmitted.

reply sends a carriage return after it sends string . To suppress
this, include a semicolon at the end of the statement. If you use
reply without a string, it sends only a carriage return. You
usually need the semicolon with InterCom sessions.

Use this statement only when the session is online.

For related information, see the press statement.

Example 1 reply "Hello!"

In this example, the macro sends Hello!

Example 2 reply userid + " " + password

or

reply userid, " ", password

or

reply userid;
reply " ";
reply password

In this example, the macro sends the user ID, a space, and the
password.

Example 3 reply chr(3);

In this example, the macro sends a ^C to the host.

See Also press

Chapter 6 CASL Language

request (statement)

The request statement, which is a synonym for the receive
statement, is supported only for backward compatibility. Refer to
“receive (statement)” on page 285.
request (statement) 289

Chapter 6 CASL Language

restore (statement)

Use restore to restore the Accessory Manager application
window to its previous size.

Format restore

Comments The restore statement restores the Accessory Manager
290 restore (statement)

application window to the size it was before it was maximized or
minimized.

This statement applies only to the Accessory Manager application
window. To restore a session window, use the show statement.

Example restore

See Also maximize, minimize, move, show, size

Chapter 6 CASL Language

return (statement)

Use return to exit a function or to return from a subroutine.

Format return [expression]

Comments When the return statement is used to exit a function, it returns a
value. expression is the return value.
return (statement) 291

When return is used in a subroutine, the statement does not
return a value.

Example 1 func calc_largest (integer num1, ...
integer num2) returns integer
if num1 > num2 then return num1
else return num2

endfunc

In this example, the function compares two numbers to determine
which is larger and returns that number.

Example 2 integer i
gosub count_to_10
end
label count_to_10

for i = 1 to 10
print i

next
return

In this example, the macro calls a subroutine to display the
numbers 1 to 10. Note that the return statement does not return
a value in this example.

See Also func...endfunc, gosub...return

Chapter 6 CASL Language

right (function)

Use right to return the right portion of a string.

Format x$ = right(string [, integer])

Comments right returns the rightmost integer characters in string . If
integer is not specified, the last character in string is returned.
292 right (function)

If integer is greater than the length of string , string is
returned.

Example 1 dog_name = right("Hey, Fido", 4)

In this example, right returns Fido in dog_name.

Example 2 print right(long_string, 78)

In this example, the last 78 characters in long_string are
printed on the screen.

See Also left, mid, slice, strip, subst

Chapter 6 CASL Language

rmdir (statement)

Use rmdir to remove a subdirectory.

Format rmdir directory

Comments directory must be a string expression containing a valid
directory name. If the directory name exists and contains no files
rmdir (statement) 293

or subdirectories, it is removed. If it does not exist or if it contains
files or subdirectories, an error occurs.

You can also use the abbreviation rd for this statement.

Example 1 rmdir "C:\INFOCN32\ACCMGR32\TMP"

In this example, the rmdir statement removes the TMP
subdirectory.

Example 2 rmdir some_dirname

In this example, rmdir removes the directory contained in
some_dirname .

See Also mkdir

Chapter 6 CASL Language

run (statement)

Use run to run another application.

Format run " filename "

Comments This statement starts another application. filename is the name
of the executable file.
294 run (statement)

If the file does not reside in a directory included in the PATH
statement of your AUTOEXEC.BAT file, you must specify the
drive and directory where the file is located.

Example 1 run "NOTEPAD.EXE"

In this example, the macro runs Notepad. (In this case, the drive
and directory are included in the PATH statement in the
AUTOEXEC.BAT file, and are therefore not required in the run
statement.)

Example 2 run "D:\APPS\CLOCK.EXE"

In this example, the macro runs CLOCK.EXE, which is located in
the APPS directory on drive D. In this case, the drive and
directory are included in the run statement, since they are not
included in the PATH statement in the AUTOEXEC.BAT file.

Chapter 6 CASL Language

save (statement)

Use save to save a session.

Format save [" name"]

Comments name is optional. If name is included, it must be a valid file name,
and the session is saved using that name. You do not have to
save (statement) 295

include the .ADP file extension. If name is not included, the
session is saved under its current name.

Example 1 save

In this example, the script saves the session using its current
name.

Example 2 save "Source"

In this example, the script saves the session as SOURCE.ADP.

Chapter 6 CASL Language

script (system variable)

Use script to specify the name of the session start-up macro.

Format script = filename

Comments script specifies the name of the macro to run each time you open
the session. filename must be a valid file name; you do not have
296 script (system variable)

to include the .XWC file extension.

Example 1 script = "LOGON"

In this example, the session start-up macro is set to
LOGON.XWC.

Example 2 if script = "LOGON" then ...

In this example, some action is taken if the start-up macro for the
session is named LOGON.XWC.

See Also startup

Chapter 6 CASL Language

scriptdesc (compiler directive)

Use scriptdesc to specify a description for a macro.

Format scriptdesc string

Comments scriptdesc defines descriptive text for a macro. string can be
up to 40 characters in length.
scriptdesc (compiler directive) 297

Example scriptdesc "Login macro for MARC"

In this example, scriptdesc is set to the specified string.

Chapter 6 CASL Language

secno (function)

Use secno to return the number of seconds since midnight.

Format x = secno[(hh, mm, ss)]

Comments secno returns the number of seconds since midnight.
298 secno (function)

You can get the number of seconds that have elapsed since
midnight for any given time by passing the hours, minutes, and
seconds of that time as hh , mm, and ss (24-hour format).

Example 1 print secno

In this example, the number of elapsed seconds since midnight are
printed on the screen.

Example 2 print secno(14, 2, 31)

In this example the macro prints the number of elapsed seconds
since midnight for the time 2:02:31 P.M.

Chapter 6 CASL Language

seek (statement)

Use seek to move a random file input/output pointer.

Format seek [# filenum ,] integer

Comments seek moves a random file input/output pointer to character
position integer . The next get or put action commences at that
seek (statement) 299

point. (The first byte in a file is character position 0.)

filenum must be an open input file number. If filenum is
omitted, the default input file number stored in definput is
assumed.

integer is the number of bytes from the beginning of the file, not
the current location. (See the loc function earlier in this chapter
for more information.)

seek does not move the pointer beyond the end-of-file marker.

Each get or put advances the input/output pointer by the number
of bytes read or written. If the records in a random file are of fixed
length and each get reads one record, reading the file backwards
requires that after each get you must seek backwards two
records.

You must open the file in random mode to use this statement.

Examples seek #1, 0

In this example, the pointer is positioned at the beginning of the
file.

seek #1, rec_len * rec_num

In this example, seek moves the I/O pointer to the position that
results from multiplying the record length by the record number.

See Also get, loc, open, put

Chapter 6 CASL Language

send (statement)

Use send to transfer a file to a host.

Format send filename

Comments send initiates a file transfer to the host. filename is the name of
the file to send, and can be a full path name.
300 send (statement)

The operation of this command depends on the file transfer
protocol in use. For example, some file transfer protocols display a
dialog box when you initiate a file transfer; others do not.

This statement is valid only when the session is online.

Example 1 send "B:\INVOICE"

In this example, the send statement sends the file INVOICE from
drive B on the PC to the host.

Example 2 send some_fname

In this example, the send statement sends the file assigned to
some_fname .

See Also receive

Chapter 6 CASL Language

sendbreak (statement)

Use sendbreak to send a break signal to the host.

Format sendbreak

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
sendbreak (statement) 301

Comments This statement sends a break signal to the host. Break signals are
often interpreted by host systems as a cancel signal, and they
usually stop some action.

This statement is valid only when a session is connected to a host.

Example sendbreak

Chapter 6 CASL Language

session (function)

Use session to find out the current session number.

Format x = session

Comments The session function returns the session number of the current
session, which may or may not be the active session. The active
302 session (function)

session is the session that is currently using the keyboard or is
waiting for keyboard input. The current session is the one in
which the macro is running.

To determine if the session in which the macro is running is the
active session, test the session function.

Chapter 6 CASL Language

sessname (function)

Use sessname to find out the name of another session.

Format x$ = sessname(integer)

Comments sessname returns the name of the session represented by
integer . If there is no session with that number, a null string is
sessname (function) 303

returned.

You can use this function to find out which sessions are running
concurrently.

Example print sessname(1), sessno(sessname(1))

In this example, the macro displays the name and number of the
session identified by the integer 1.

See Also sessno

Chapter 6 CASL Language

sessno (function)

Use sessno to find out the session number of a session.

Format x = sessno [(string)]

Comments sessno returns the number of the session whose name is string .
You do not have to include the .ADP file extension. If there is no
304 sessno (function)

session with that name, 0 is returned. If you do not specify an
argument, sessno returns the number of open sessions.

As with the sessname function, you can use sessno to find out
which sessions are running concurrently.

Example if sessno ("TCPA_1") then
print "A TCPA session exists."

In this example, the macro displays a message if one of the
currently open sessions is TCPA_1.ADP.

See Also sessname

Chapter 6 CASL Language

show (statement)

Use show to redisplay a minimized session window.

Format show

Comments This command redisplays a session window that was previously
minimized with the hide statement.
show (statement) 305

To redisplay the Accessory Manager application window, use the
restore statement.

Example show

See Also hide, restore, zoom

Chapter 6 CASL Language

showquickpad (statement)

The showquickpad statement is supported only for backward
compatibility. Refer to “loadquickpad (statement)” on page 236.
306 showquickpad (statement)

Chapter 6 CASL Language

size (statement)

Use size to change the size of the Accessory Manager application
window.

Format size x, y

Comments This statement changes the size of the Accessory Manager
size (statement) 307

application window. The window can be made larger or smaller
than its current size.

x and y are the horizontal and vertical size, in pixels.

The range of coordinates is determined by the resolution of the
video adapter and monitor in use.

Example size 200, 350

In this example, the application window is resized to be 200 pixels
wide and 350 pixels high.

See Also maximize, minimize, move, restore

Chapter 6 CASL Language

slice (function)

Use slice to return portions of a string.

Format x$ = slice(string , integer ...
[, delin_str [, where_int]])

Comments slice returns portions of strings. string is the string that you
308 slice (function)

want to work with. It is divided into substrings as delineated by
delin_str . For example, the string alpha beta gamma consists
of three substrings (alpha , beta , and gamma) which are delimited
by spaces. delin_str can be a space, comma, or any other
delimiter. (If delin_str is omitted, a space is assumed.) You can
specify more than one delimiter (for example, ";:").

When you use slice , the substring in integer position is
returned. For example, if the string consists of three substrings
and integer is 2, the second substring is returned.

where_int specifies where the function is to begin its analysis in
string .

Example 1 sub_string = slice("alpha beta gamma", 2)

In this example, slice returns beta .

Example 2 print slice("alpha, beta, gamma", 2, ",")

In this example, beta is displayed on the screen.

Example 3 sub_string = slice("alpha, beta gamma.delta", ...
3,",.")

In this example, slice returns delta .

See Also left, mid, right, strip, subst

Chapter 6 CASL Language

startup (system variable)

Use startup to read or set the name of a macro to run when
Accessory Manager is started.

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
startup (system variable) 309

Format startup = string

Comments startup sets or reads the name of the macro to run automatically
when you run Accessory Manager. If startup is null, no macro is
run at start-up time.

string must be a valid file name. You do not have to include the
.XWC file extension.

Example 1 startup = "AUTOEXEC"

In this example, a macro called AUTOEXEC.XWC runs when
Accessory Manager is started.

Example 2 startup = ""

In this example, startup is null, so no macro is run when
Accessory Manager is started.

See Also script

Chapter 6 CASL Language

str (function)

Use str to convert a number to string format.

Format x$ = str(number)

Comments str converts numbers to strings. number can be a real (floating
point) number or an integer. str does not add any leading or
310 str (function)

trailing spaces.

Example 1 print 2 : print str(2) : print length(str(2))

In this example, the macro displays three lines. The first line
contains the integer 2. The second line contains the string that
results from converting integer 2 to a string. The last line contains
the length of the string displayed in line 2.

Example 2 reply str(shares_to_buy)

In this example, the macro sends the string equivalent of
shares_to_buy to the host.

Example 3 integer counter
string items[10]
for counter = 1 to 10

items[counter] = "item" + str(counter)
print items[counter]

next

In this example, the macro declares counter as an integer and
items as an array of ten strings. The for...next construct is
used to display the individual elements in the array.

See Also intval, val

Chapter 6 CASL Language

strip (function)

Use strip to return a string with certain characters removed.

Format x$ = strip(string [, wild [, where_int]])

Comments strip removes unwanted characters from strings. This function
is useful for removing unwanted characters from lines read from
strip (function) 311

word processing text files, leading zeros, and similar characters.

string is the string to work with. wild can be either the string of
characters that you want to remove from string or an integer
that represents the Accessory Manager character classes that you
want to remove. (For a list of these integers, refer to “class
(function)” on page 141.) The default value for wild is a space.

where_int can be one of the following:

Example 1 print strip("0123456", "0", 2)

In this example, the macro displays 123456 .

Example 2 print strip("Sassafras", "as", 0)

In this example, the macro prints fr .

Example 3 reply strip(strip(user_resp, junk, 0), " ", 3)

In this example, the macro first strips out junk from user_resp
and then strips leading and trailing spaces from what remains of
user_resp . The result is sent to the host.

See Also left, mid, right, slice, subst

Value Result

0 Strip all occurrences of wild . This is the default.

1 Strip from the right side, stopping at the first occurrence of a
character not in wild .

2 Strip from the left side, stopping at the first occurrence of a character
not in wild .

3 Strip from both the right and left sides, stopping on each side at the
first occurrence of a character not in wild .

Chapter 6 CASL Language

stroke (function)

Use stroke to wait for the next keystroke from the keyboard.

Format x = stroke

Comments stroke is similar to the inkey function, but stroke stops the
macro to wait for a keystroke and returns the value of the
312 stroke (function)

keystroke.

The value returned is the ASCII value of the key pressed for the
printable characters (0–127 decimal) and special keystrokes such
as the arrow keys, function keys, and special-purpose keys. (Refer
to “inkey (function)” on page 224 for a list of keys and their
corresponding numbers.)

Example print "Press a key to see its value"; : print stroke

In this example, the macro prints a message followed by the value
of the key that is pressed.

See Also inkey

Chapter 6 CASL Language

subst (function)

Use subst to return a string with certain characters substituted.

Format x$ = subst(string , old_str , new_str)

Comments subst searches string for each occurrence of old_str and
substitutes the characters in new_str .
subst (function) 313

Example print subst("alpha", "a", "b")

In this example, the macro prints blphb .

See Also left, mid, right, slice, strip

Chapter 6 CASL Language

systime (function)

Use systime to return the number of ticks Accessory Manager
has been active.

Format x = systime

Comments systime returns the number of ticks that Accessory Manager has
314 systime (function)

been active. (One tick is one tenth of a second.) You can use
systime in delay loops, random number routines, and similar
routines.

To determine the number of ticks that a session has been online,
use the ontime function.

Example 1 print systime

In this example, the value of systime is displayed.

Example 2 if systime mod 100 = 0 then ...

In this example, the macro takes some action if the value of
systime divided by 100 is zero.

See Also ontime

Chapter 6 CASL Language

tabwidth (module variable)

Use tabwidth to determine the number of spaces a tab character
moves the cursor.

Format tabwidth = integer

Comments This variable determines the number of spaces that the cursor
tabwidth (module variable) 315

moves when the tab character is received. integer can be any
number from 1 to 80. The default is 8.

Example tabwidth = 15

In this example, tabwidth is set to 15 spaces.

Chapter 6 CASL Language

terminal (system variable)

Use terminal to read or set the type of the terminal emulation
used by the session.

Note: EXTRA! Office for Accessory Manager 3270 and 5250
sessions do not support this item; VT™ sessions do support it.
316 terminal (system variable)

Format terminal = string

Comments terminal specifies the type of terminal emulation to use for the
current session. string can be one of the following:

For more information about terminal tools, refer to Chapter 7,
“Connection, Terminal, and File Transfer Tools.”

Example 1 assume terminal "AMUTS"
terminal = "AMUTS"
termmodel = "UTS60"

This example shows how to load UTS 60 terminal emulation.

Example 2 print terminal

This example shows how to print the current terminal emulation
selection.

See Also assume, device, protocol

String
Sub-Models (use the
termmodel variable) Emulation Type

DCAT27 None T 27 (InterCom)

AMUTS UTS20, UTS40, UTS60 UTS (PEP)

Note: You cannot change a session from one terminal
emulation type to another. For example, you cannot change a
T 27 session to a UTS session. However, you can change from
one sub-model to another. For example, you can change from a
UTS 20 to a UTS 60 session.

Chapter 6 CASL Language

terminate (statement)

Use terminate to exit Accessory Manager.

Format terminate

Comments terminate exits Accessory Manager.
terminate (statement) 317

To close just a session, use the quit statement.

Example clear
print "Accessory Manager will close in 5 seconds."
for i = 1 to 5

print at 5, 5, time(-1)
wait 1 second

next
terminate

In this example, the macro clears the window and then displays a
message on the screen. Next, using the for...next construct,
the macro displays the current time once every second until five
seconds have elapsed. Finally, it closes Accessory Manager.

See Also quit

Chapter 6 CASL Language

time (function)

Use time to return a formatted time string.

Format x$ = time(integer)

Comments time returns the time in the correct format for the operating
system country code.
318 time (function)

integer is required; it is the number of seconds elapsed since
midnight. You can use -1 as the argument to indicate the current
number of elapsed seconds since midnight.

Example 1 print time(-1)

This example prints the current time.

Example 2 x = time(32431)

In this example, the time represented by 32,431 seconds after
midnight is returned in x .

Example 3 open output "time.tst" as #1
write #1, "The file open time is " + time(-1)
while online

string_in = nextline
write line #1, string_in

wend
close #1

In this example, the file TIME.TST is opened for output, and a
phrase is written to the file using the write statement. While the
macro is online, each line of text from the host is written to the
file. Then the file is closed.

See Also curhour, curminute, cursecond

Chapter 6 CASL Language

timeout (system variable)

Use timeout to determine the status of the most recent
nextline , wait , or watch...endwatch statement.

Format timeout

Comments timeout is true or false indicating whether the last nextline ,
timeout (system variable) 319

wait , or watch...endwatch statement timed out. timeout is
true if the statement exceeded the time specified before finding
the condition for which it was looking.

Example repeat
reply
wait 1 second for "Login:"

until timeout = false

This example uses the timeout system variable and wait
statement to log on to a host. In this case, the host wants a
number of carriage returns so it can check the baud rate, parity,
and stop bits. The carriage returns should be sent about once
every second, and it will take an arbitrary number of carriage
returns before the host returns the login prompt. When it is ready,
the host sends the phrase Login :.

See Also nextline, wait, watch...endwatch

Chapter 6 CASL Language

trace (statement)

Use trace to trace how the lines in a macro are executing.

Format trace option

Comments trace can be useful for debugging macros.
320 trace (statement)

option is one of the following:

Example trace on

In this example, tracing is activated.

See Also genlines

Value Result

on The macro displays source macro line numbers as the statements
in the macro are executed.

off The macro does not display source macro line numbers as the
statements in the macro are executed.

Chapter 6 CASL Language

track (statement)

Use the track statement to watch for strings or keystrokes while
online.

Format track [tracknum,] condition

Comments track lets you check for any number of events or incoming strings
track (statement) 321

while the macro is online, and then take some action based on
which events occur.

track events take precedence over wait and watch events. If a
track event occurs while a macro is at a wait or watch , the wait
or watch is terminated and program control passes to the next
statement. If you use track routine (described below), control
passes to the specified subroutine.

You can check events that you are tracking only at a wait or
watch . If you do not use track routine , you have to check the
event with an if...then...else statement.

In the track statement, tracknum is the track number for the
track statement. You should include tracknum unless the
condition is routine label | procedure or clear . You can
have any number of track statements active at one time. You can
get an available track number with the freetrack function.
Track numbers stay active as long as the macro that set them is
still running. When the macro ends, the track numbers are closed.

Chapter 6 CASL Language

condition is one or more of the following, separated by commas:

Condition Result

[case] [space] string When the string specified in string is received, the value of the
corresponding track function is set to true.

case indicates that the case of string must be matched. If case is omitted,
the case of string is ignored.

space indicates that all white-space characters in string (such as spaces
or tabs) must be matched. If space is omitted, white space is ignored.
322 track (statement)

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

A tilde (~) with a dash (-) followed by a special sequence character
indicates that one or more occurrences of the sequence should be tracked.
For example, ~-# indicates that one or more occurrences of any digit (0–9)
should be tracked.

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is
quiet (no characters are received) for the amount of time specified in time .

time is one of the following time expressions:

■ n hours

■ n minutes

■ n seconds

■ n ticks (1/10 second each)

For this condition to work properly, the session must be online.

Chapter 6 CASL Language

key stroke_value key specifies a keyboard character to track.

stroke_value is the ASCII value (0–127) of the key pressed. For the
values for special keystrokes (such as the function keys or arrow keys), refer
to “inkey (function)” on page 224. The keyboard character comes from the
local keyboard, not the communication line.

routine procedure Use track routine to designate a subroutine or procedure that handles
the track event.

Condition Result
track (statement) 323

To stop tracking a particular item, set the item to a null string.

You can use the match system variable to return the string found
during the last track operation.

Example track clear
track 1, space "system going down"
track 2, case space "no more messages"
track 3, case "thank you for calling"
track 4, key 833 -- Alt+A
track 5, quiet 1 minute
track routine check_track

wait for key 27 -- Esc
...
...
end

label check_track
if track(1) then

{ bye : wait 8 minutes : new "megamail" : end }
if track(2) then goto send_outbound_messages
if track(3) then { bye : end }
if track(4) then end
if track(5) then { alarm 6 : reply : return }

This example uses both the track statement and the track
function to watch for problems or Alt+A during an e-mail session.

See Also freetrack, inkey, match, track (function), wait,
watch...endwatch

procedure is the name of the subroutine or procedure.

clear Use track clear to clear all tracked items and reset all of the track flags.

Chapter 6 CASL Language

track (function)

Use the track function to determine if a string or event for which
a track statement is watching has occurred.

Format x = track

or
324 track (function)

x = track(tracknum)

Comments The track function checks if one of the strings or events for which
a track statement is watching has been received and, if so, which
one. Use this function with the wait and watch...endwatch
statements.

track events take precedence over wait and watch events. If a
track event occurs while a macro is at a wait or watch , the wait
or watch is terminated and program control passes to the next
statement. If you use track routine , control first passes to the
specified subroutine.

You can check events that you are tracking only at a wait or
watch . If you do not use track routine , you have to check the
event with an if...then...else statement.

tracknum is the track number for the track event. The track
function is set to true when the string or event in the
corresponding track statement is received.

The first form of the track function (x = track) returns the
value of the lowest track number that has had an event occur. If
none of the track statements has found a match, the track
function returns false .

The second form of the track function (x = track(tracknum))
returns true if the specified track event has occurred. Checking
the function clears it.

Chapter 6 CASL Language

Example track 1, "System is going down"
wait for key 27
if track(1) then reply "logout"

In this example, the track statement is using track number 1 to
watch for a string. The macro is waiting for the Esc key. The
track function for track 1 is checked to determine if the string
was found, and if so, a logout message is sent to the host.

See Also match, track (statement), wait, watch...endwatch
track (function) 325

Chapter 6 CASL Language

trap (compiler directive)

Use trap to control error trapping.

Format trap option

Comments trap lets you control whether the macro continues to run when
errors occur that would normally stop the macro.
326 trap (compiler directive)

option is one of the following:

When trap is on , use the error function and the errclass and
errno system variables to determine the occurrence, class, and
number of the error. When the error function is tested for a
value, it is cleared out. If it is not cleared, the next error that
occurs will stop the macro.

In general, it is best to set trap to on just prior to a statement
that might generate an error, and then set it to off immediately
after the statement executes. Be sure to check the error return
codes because a subsequent statement may reset the codes.

Example string fname
fname = "*.exe"
trap on
send fname
trap off
if error then goto error_handler

In this example, the macro branches to an error-handling routine
if an error occurs when the send statement is executed.

See Also errclass, errno, error

Value Result

on An error condition does not interrupt the running of the macro.

off An error condition interrupts the running of the macro. This is the
default state.

Chapter 6 CASL Language

true (constant)

Use true to set a variable to logical true.

Format x = true

Comments true is always logical true. Like its complement false , true
exists as a way to set variables on and off. If true is converted to
true (constant) 327

an integer, its value is 1.

Example x = 1
done = false
while not done

x = x + 1
if x = 10 then done = true

wend

In this example, the statements in the while...wend construct
are repeated until done is true .

See Also false, off, on

Chapter 6 CASL Language

unloadallquickpads (statement)

Use unloadallquickpads to unload all QuickPads for the
current session.

Format unloadallquickpads

Comments This statement unloads all loaded QuickPads for the current
328 unloadallquickpads (statement)

session. To unload one specific QuickPad, use the
unloadquickpad statement.

Example unloadallquickpads

See Also hideallquickpads, hidequickpad, loadquickpad,
showquickpad, unloadquickpad

Chapter 6 CASL Language

unloadquickpad (statement)

Use unloadquickpad to unload the specified QuickPad for the
current session.

Format unloadquickpad string

Comments This statement unloads the QuickPad specified in string . You do
unloadquickpad (statement) 329

not have to specify the .EQP file extension.

Example unloadquickpad "apad"

In this example, the QuickPad APAD.EQP is unloaded.

See Also hideallquickpads, hidequickpad, loadquickpad,
showquickpad, unloadallquickpads

Chapter 6 CASL Language

upcase (function)

Use upcase to convert a string to uppercase letters.

Format x$ = upcase(string)

Comments upcase converts only the letters a–z to uppercase characters.
Numerals, punctuation marks, and notational symbols are
330 upcase (function)

unaffected.

Example string yn
print "Do this again?";
input yn
if upcase(yn) = "Y" then goto start

In this example, the character typed by the user (which is stored
in the yn variable) is checked to determine if it is an uppercase Y.
If it is, the macro branches to the label start .

See Also lowcase

Chapter 6 CASL Language

userid (system variable)

Use userid to read or set a user number or identifier for a
session.

Format userid = string

Comments userid sets or reads the user identification associated with the
userid (system variable) 331

current session. userid is limited to 40 characters.

Example 1 userid = "76004,302"

In this example, userid is set to the specified string.

Example 2 reply userid

In this example, userid is sent to the host.

Example 3 userid = ""

In this example, userid is cleared.

Note: To set this parameter using Accessory Manager, click
Session Preferences from the Options menu, click the CASL
Macro tab, and type the desired string in the User ID text box.

Chapter 6 CASL Language

val (function)

Use val to return the numeric value of a string.

Format x = val(string)

Comments Like the intval function, val returns a numeric value. However,
val returns a real (floating point) number rather than an integer.
332 val (function)

The val function evaluates string for its numerical meaning and
returns that meaning as a real number. Leading white-space
characters are ignored, and string is evaluated until a non-
numeric character is encountered.

The characters that have meaning to the val function are 0–9, ., e,
E, -, and +.

Example num = val(user_input_string)

In this example, user_input_string is converted to a real
number and returned in num.

See Also intval, str

Chapter 6 CASL Language

version (function)

Use version to return the Accessory Manager version number.

Format x$ = version

Comments version returns the Accessory Manager version number as a
string.
version (function) 333

To check the version number of Windows, use the winversion
function.

Example print version

In this example, the Accessory Manager version number is
displayed.

See Also winversion

Chapter 6 CASL Language

wait (statement)

Use wait to wait for a specific event to occur or to pause the
macro.

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
334 wait (statement)

Format wait [time] [for condition]

Comments The wait statement waits the amount of time specified in time
for the specified condition to occur.

time is one of the following time expressions:

■ n hours

■ n minutes

■ n seconds

■ n ticks (1/10 second each)

If time is included and the specified condition occurs within that
time period, the macro resumes running.

If time is included and the specified condition does not occur
within that time period, the timeout system variable returns
true .

If time is omitted, the macro waits indefinitely for the specified
condition to occur.

The wait time construct can be used whether the session is off
line or online.

Chapter 6 CASL Language

condition is one or more of the following, separated by commas:

Condition Result

[case] [space] string When the string specified in string is received, the macro continues.

case indicates that the case of string must be matched. If case is omitted,
the case of string is ignored.

space indicates that all white-space characters in string (such as spaces
or tabs) must be matched. If string ends with a space and you want to
match that space, you must use <Space> in your string. If space is omitted,
wait (statement) 335

white space is ignored.

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is
quiet (no characters are received) for the amount of time specified in time .

time is one of the following time expressions:

■ n hours

■ n minutes

■ n seconds

■ n ticks (1/10 second each)

For this condition to work properly, the session must be online.

Chapter 6 CASL Language

key stroke_value key specifies a keyboard character for which to wait.

stroke_value is the ASCII value (1–127) of the key pressed. For the
values for special keystrokes (such as the function keys or arrow keys), refer
to “inkey (function)” on page 224. key 0 causes the macro to wait for any
keystroke.

You can retrieve the value of the key that was pressed using the match
function.

Condition Result
336 wait (statement)

When writing very long macros, you might need to add some wait
statements to give Accessory Manager time to process the macro.
To do this, add wait 5 ticks at several points throughout the
macro.

If you have problems with the wait for string construct (for
example, if data seems to be missing from the display), add a
second wait statement. You can wait for a string that is not at the
end of a data stream and still display the entire data stream by
using two wait statements in sequence as follows:

wait for " string "
/* data up to and including string is displayed */
wait for quiet 1 tick
/* the rest of the data stream is displayed */

Example 1 wait for "Login:" : reply userid

In this example, the macro waits indefinitely for the specified
phrase and sends the information stored in the userid system
variable to the host.

Example 2 wait 1 second for "Hello"

In this example, the macro waits one second for the specified
phrase.

Note that the keyboard character comes from the local keyboard, not the
communication line.

count integer count indicates to wait for the number of characters specified in integer .

For this condition to work properly, the session must be online.

Chapter 6 CASL Language

Example 3 wait for "A", "B", "C"
string_in = match
case string_in of

"A" : reply 'We received an "A"'
"B" : reply 'We received a "B"'
"C" : reply 'We received a "C"'

endcase

In this example, the macro waits for any one of the characters A,
B, or C. Depending on which value is received, the appropriate
response is sent to the host.
wait (statement) 337

Example 4 wait 20 seconds for "in:" : if timeout then
goto no_ans

In this example, the macro waits 20 seconds for a phrase. If the
phrase does not arrive within 20 seconds, the macro branches to
the label no_ans .

Example 5 wait for count 10

In this example, the macro waits until ten characters are received.

Example 6 wait for case "UserID:"

In this example, the macro waits for an exact upper- and
lowercase match for the UserID : prompt.

See Also inkey, match, online, timeout, track (statement),
watch...endwatch

Chapter 6 CASL Language

watch...endwatch (statements)

Use watch...endwatch to watch for one of several strings of text
from the communication device or for a keystroke.

Note: EXTRA! Office for Accessory Manager sessions do not
support this item.
338 watch...endwatch (statements)

Format watch [time] for
[[case] [space] string : [statement group]]
[quiet time] : [statement group]
[key stroke_value] : [statement group]
[count integer] : [statement group]

endwatch

Comments The watch statement waits the length of time specified in time
for one of the specified conditions to occur and then performs the
specified statement group .

time is one of the following time expressions:

■ n hours

■ n minutes

■ n seconds

■ n ticks (1/10 second each)

If time is included and the specified condition occurs within that
time period, the specified statement group is performed, and the
program logic then continues with the statement following
endwatch .

If time is included and the specified condition does not occur
within that time period, the timeout system variable returns
true .

If time is omitted, the macro waits indefinitely for the specified
condition to occur.

Chapter 6 CASL Language

The following table explains the watch conditions:

Condition Result

[case] [space] string When the string specified in string is received, the subsequent
statement group is performed.

case indicates that the case of string must be matched. If case is omitted,
the case of string is ignored.

space indicates that all white-space characters in string (such as spaces
or tabs) must be matched. If space is omitted, white space is ignored.
watch...endwatch (statements) 339

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is
quiet (no characters are received) for the amount of time specified in time
before performing the statement group .

time is one of the following time expressions:

■ n hours

■ n minutes

■ n seconds

■ n ticks (1/10 second each)

For this condition to work properly, the session must be online.

Chapter 6 CASL Language

key stroke_value key specifies a keyboard character for which to watch.

stroke_value is the ASCII value (0–127) of the key pressed. For the
values for special keystrokes (such as the function keys or arrow keys), refer
to “inkey (function)” on page 224.

You can retrieve the value of the key using the match function.

The keyboard character comes from the keyboard, not the communication
line.

Condition Result
340 watch...endwatch (statements)

statement group is any CASL statement.

The watch...endwatch construct is not a looping construct.
When one of the watch conditions is met, the macro executes the
appropriate statement(s). To use these statements in a loop, place
them inside a while...wend construct.

Example 1 watch for
"Login:" : goto login_procedure
"system down" : goto cant_log_in
quiet 10 minutes : goto system_is_dead
key 27 : reply "logoff" : bye : end

endwatch

In this example, the macro watches for one of the specified events.
If any of the events occurs, the statements to the right of the colon
are executed, and the watch...endwatch construct is completed.

Example 2 while online
watch for

"graphics" : reply "Yes"
"first name" : reply userid
"password" : reply password : end

endwatch
wend

This example includes the watch...endwatch construct in a
while...wend loop. The while...wend construct continues to
loop until watch receives the password: prompt.

See Also inkey, match, track, wait, while...wend

count integer count indicates to watch for the number of characters specified in integer .

For this condition to work properly, the session must be online.

Chapter 6 CASL Language

weekday (function)

Use weekday to return the number of the day of the week.

Format x = weekday[(integer)]

Comments weekday returns the number of the current day of the week.
Sunday is 0, Monday is 1, and so on.
weekday (function) 341

If integer is specified, weekday returns the day of the week for a
given date in the past or future.

Example print weekday, weekday(365)

For a Friday, the macro in this example prints 5, a tab, and 1.

See Also curday

Chapter 6 CASL Language

while...wend (statements)

Use while ...wend to perform a statement or group of
statements as long as a specified condition is true.

Format while expression
...
...
...
342 while...wend (statements)

wend

Comments while...wend lets you perform one or more statements as long
as a certain expression is true.

expression is any logical expression. It can be a combination of
numerical, boolean, or string comparisons that can be evaluated
as either true or false .

Unlike the repeat...until construct, the while...wend
construct is not executed at all if the expression is false the first
time it is evaluated.

wend indicates the end of the conditional statements.

When using any looping construct, make sure that the
terminating condition (expression) will eventually become
true , or that there is some other exit from the loop.

Example x = 1
while x <> 100

print x
x = x + 1

wend

In this example, the macro prints the numbers 1 through 99.

See Also repeat...until

Chapter 6 CASL Language

winchar (function)

Use winchar to return the ASCII value of a character read from a
session window.

Format x = winchar(row , col)

Comments winchar reads a character from a session window at row , col .
winchar (function) 343

The winchar function helps you determine the results of
operations not under macro control, such as the appearance of a
certain character at a certain location on the screen while under
the control of a host.

Example char1 = winchar(1, 1)

In this example, the character at row 1, column 1 is stored in
char1 .

See Also nextchar, nextline, winstring

Chapter 6 CASL Language

winsizex (function)

Use winsizex to return the number of visible columns in the
session window.

Format x = winsizex

Comments winsizex returns the number of visible columns in the session
344 winsizex (function)

window. This function is useful in macros that display information
on the screen and have to accommodate the size of the session
window.

Example 1 print winsizex

In this example, the macro prints the number of visible columns in
the session window at its current size.

Example 2 if winsizex < 80 then zoom

If the session window is less than 80 columns in width, this
statement maximizes it.

See Also winsizey

Chapter 6 CASL Language

winsizey (function)

Use winsizey to return the number of visible rows in the session
window.

Format x = winsizey

Comments winsizey returns the number of visible rows in the session
winsizey (function) 345

window. This function is useful in macros that display information
on the screen and have to accommodate the size of the session
window.

Example if winsizey < 24 then zoom

If the session window is less than 24 rows in length, this
statement maximizes it.

See Also winsizex

Chapter 6 CASL Language

winstring (function)

Use winstring to return a string read from a session window.

Format x$ = winstring(row , col , len)

Comments winstring reads a string of characters from the session window,
beginning at row , col , for len characters, with any trailing
346 winstring (function)

spaces removed.

winstring lets you determine the results of operations not under
macro control, such as the appearance of a certain string at a
certain location on the screen while under the control of a host.

Example string data
data = winstring(10, 10, 11)
if data = "Login name:" then reply userid

In this example, if the phrase Login name: appears in the
session window beginning at row 10, column 10, then the userid
system variable is sent to the host.

Chapter 6 CASL Language

winversion (function)

Use winversion to check the Windows version number.

Format x$ = winversion

Comments winversion returns the Windows version number as a string.
winversion (function) 347

To check the version number of Accessory Manager, use the
version function.

Example print winversion

In this example, the macro displays the Windows version number
on the screen.

See Also version

Chapter 6 CASL Language

write (statement)

Use write to write lines containing comma-delimited fields of
ASCII data to a sequential file.

Format write [# filenum ,] [item] [{, | ;} ...
[item]] ... [;]
348 write (statement)

Comments The write statement writes lines containing comma-delimited
fields of ASCII data to a sequential file. This statement operates
only on files opened in output or append modes.

filenum must be an open file output number. If filenum is
omitted, the file number stored in the variable defoutput is
assumed.

Each write adds the specified items to the file, with each
separated from the next by a comma. To suppress the commas in
the output file, separate the items in the list with semicolons
instead of commas. If an item includes a comma or quotation
marks, use the quote function to enclose the item in quotation
marks.

Normally, write terminates each addition to the file with a
carriage-return/line-feed (CR/LF). To suppress the CR/LF, use the
trailing semicolon.

Example 1 open output file_name as #1
write #1, alpha, beta, gamma;
close #1

In this example, the macro opens a file, writes the specified strings
to the file, and closes the file.

Example 2 write #1, quote(var1), quote(var2), quote(var3)

In this example, the macro encloses the data strings in quotation
marks before writing them to the file.

See Also defoutput, open, quote, write line

Chapter 6 CASL Language

write line (statement)

Use write line to write lines of data to a sequential file.

Format write line [# filenum ,] [item] [{, | ;} ...
[item]] ... [;]

Comments The write line statement writes a line of data to a sequential
write line (statement) 349

file. This statement operates only on files opened in output or
append modes.

filenum must be an open file output number. If filenum is
omitted, the file number stored in the variable defoutput is
assumed.

To write each item on a separate line, separate the items with a
comma. To write the data on a single line rather than separate
lines, separating the items with a semicolon.

Normally, write line terminates each addition to the file with a
carriage-return/line-feed (CR/LF) pair. To suppress the CR/LF,
use the trailing semicolon.

Example 1 write line "end of test"

In this example, the text end of test is written to a file. Since
the file number is not specified, the default file number in
defoutput is used.

Example 2 write line #1, some_text

In this example, the macro writes the contents of some_text to
the file identified by the file number 1.

See Also defoutput, open, write

Chapter 6 CASL Language

xpos (function)

Use xpos to find out the column location of the cursor.

Format x = xpos

Comments xpos returns the number of the column in which the cursor is
located.
350 xpos (function)

Example 1 cur_col = xpos

In this example, the macro assigns the cursor’s current column
position to the cur_col variable.

Example 2 if xpos = winsizex - 1 then alarm

In this example, the PC sounds an alarm if the cursor is located
one column less than the size of the window.

See Also ypos

Chapter 6 CASL Language

ypos (function)

Use ypos to find out the row location of the cursor.

Format x = ypos

Comments ypos returns the number of the row in which the cursor is located.
ypos (function) 351

Example 1 cur_row = ypos

In this example, the macro assigns the cursor’s current row
position to the cur_row variable.

Example 2 if ypos = winsizey - 1 then alarm

In this example, the PC sounds an alarm if the cursor position is
one row less than the size of the window.

See Also xpos

Chapter 6 CASL Language

zoom (statement)

Use zoom to maximize a session window.

Format zoom

Comments zoom maximizes a session window.
352 zoom (statement)

To maximize the Accessory Manager application window, use the
maximize function.

Example if online then
zoom

In this example, the session window is maximized if the session is
online to the host.

See Also hide, show, maximize

Connection, Terminal, and
File Transfer Tools 7
353

In This Chapter This chapter provides information on Accessory Manager’s tools
for connecting to a host, emulating a terminal, and transferring
files.The chapter also lists the variables used by each tool.

The Tool Concept . 354

Connection Tools . 355

Terminal Tools . 356

File Transfer Tools . 357

Using Tool Variables . 358

Connection Tool Variables . 359

InterCom Variables . 360

PEP Variables . 364

Chapter 7 Connection, Terminal, and File Transfer Tools

The Tool Concept

A tool is a code file that controls a specific aspect of a session.
There are three types of tools:

■ Connection tool

■ Terminal tool

■ File transfer tool
354 The Tool Concept

The tools correspond to the options on the Session Type dialog box
in Accessory Manager. The connection tool corresponds to the
Connection Type; the terminal tool corresponds to the Display/
Device Type; and the file transfer tool corresponds to the File
Transfer Protocol.

For example, an InterCom session uses the INFOConnect
connection tool, the T 27 terminal tool, and the CANDE file
transfer tool.

Minimally, each session must have a connection tool and a
terminal tool; a file transfer tool is needed only when you want to
transfer files. Each of these tools is described in detail later in this
chapter.

You can configure the settings for the tools using the Settings
dialog box in Accessory Manager. For example, to configure the
connection tool, click Settings from the Options menu, click
Connection from the Categories list box, and complete the right
half of the dialog box. To configure the terminal tool, click Display
from the Categories list box. To configure the file transfer tool,
click File Transfer.

You can also configure many of these settings using a CASL
macro. For more information, refer to “Using Tool Variables” on
page 358.

Chapter 7 Connection, Terminal, and File Transfer Tools

Connection Tools

The connection tool determines which mechanism the session uses
to communicate with the host. For example, InterCom and PEP
use the INFOConnect connection tool. This connection tool lets
you select the INFOConnect path to use with your session, as well
as configure other options (such as the action to take if the session
is disconnected, or the host graphics protocol to use).
Connection Tools 355

You can configure the INFOConnect connection tool using either
the Settings dialog box in Accessory Manager or a CASL macro.
For information on doing this using a CASL macro, refer to “Using
Tool Variables” on page 358 and “Connection Tool Variables” on
page 359.

EXTRA! Office for Accessory Manager and WinFTP sessions do
not use the INFOConnect connection tool; they have separate
connection tools of their own.

Currently, you cannot use a CASL macro to specify which
connection tool to use for EXTRA! Office for Accessory Manager or
WinFTP sessions. To specify the connection tool, you must click
Session Type from Accessory Manager’s Options menu and click
the desired item from the Connection Type list box.

In addition, you cannot use a CASL macro to configure an EXTRA!
Office for Accessory Manager or WinFTP connection tool. To
configure the connection tool, you must click Settings from the
Options menu, click Connection from the Categories list box, and
complete the Settings dialog box.

Chapter 7 Connection, Terminal, and File Transfer Tools

Terminal Tools

The terminal tool determines which kind of terminal the PC will
emulate during a session. For example, the InterCom terminal
tool emulates a T 27 terminal; the PEP terminal tool emulates a
UTS 20, UTS 40, or UTS 60 terminal. Each terminal tool lets you
interact with a particular type of host in the manner that the host
expects.
356 Terminal Tools

You cannot change a session from one terminal emulation type to
another. For example, you cannot change a T 27 session to a UTS
session. However, you can change from one sub-model to another.
For example, you can change from a UTS 20 to a UTS 60 session.
For more information, refer to “terminal (system variable)” on
page 316.

Although you cannot change the terminal tool for a session, you
can configure it using either the Settings dialog box in Accessory
Manager or a CASL macro. For information on doing this using a
CASL macro, refer to “Using Tool Variables” on page 358,
“InterCom Variables” on page 360, and “PEP Variables” on
page 364.

Currently, you cannot use a CASL macro to configure the ALC or
EXTRA! Office for Accessory Manager terminal tools. To configure
these terminal tools, you must click Settings from the Options
menu, click Display from the Categories list box, and complete the
Settings dialog box.

Chapter 7 Connection, Terminal, and File Transfer Tools

File Transfer Tools

The file transfer tools determines which file transfer protocol to
use for a session. Each file transfer protocol has a unique set of
rules and conventions that define, among other things, the
number of bytes to send for each block of data and how to detect
and correct errors.

Each product comes with its own file transfer tools. For example,
File Transfer Tools 357

InterCom comes with a CANDE file transfer tool; PEP comes with
a MAPPER and OS2200 file transfer tool.

You cannot change to a file transfer protocol that is not supported
by the session’s terminal type. For example, you cannot change
from CANDE to OS2200, since the former is designed for use with
InterCom, and the latter for use with PEP. For more information,
refer to “protocol (system variable)” on page 279.

Currently, you cannot use a CASL macro to specify which file
transfer tool to use for EXTRA! Office for Accessory Manager
sessions. To specify the file transfer tool, you must click Session
Type from Accessory Manager’s Options menu and click the
desired item from the File Transfer Protocol list box.

You can configure PEP’s MAPPER file transfer protocol using
either the Settings dialog box in Accessory Manager or a CASL
macro. For information on doing this using a CASL macro, refer to
“Using Tool Variables” on page 358 and “PEP Variables” on
page 364.

However, you cannot use a CASL macro to configure InterCom’s
file transfer protocol (CANDE) or PEP’s OS2200 file transfer
protocol. To do this, you must click Settings from the Options
menu, click File Transfer from the Categories list box, and
complete the Settings dialog box.

Chapter 7 Connection, Terminal, and File Transfer Tools

Using Tool Variables

The connection, terminal, and file transfer tools have predefined
variables that you can read or change using a CASL macro. These
variables correspond to options that you can change on the
Settings dialog box. The values for these variables are stored in
each session’s .ADP file.

The variable names are stored in text files with file extensions of
358 Using Tool Variables

.PRE.

To read or set a variable, use the assume statement to specify the
tool type and file name. Then use the format variable_name =
value to set the desired configuration option. For more
information about the assume statement, refer to “assume
(statement)” on page 126.

Example assume terminal "dcat27"
CurShape = "block"

InterCom has a string variable CurShape that can have the
values Block , Underline , or VerticalBar . This macro changes
the cursor shape to a block.

Note: Do not alter the .PRE files in any manner. Otherwise,
compiling a macro becomes unpredictable.

Chapter 7 Connection, Terminal, and File Transfer Tools

Connection Tool Variables

The INFOConnect connection tool supports the variables in
ICSTOOL.PRE:

Variable Type Description Values

DevModel String An internal setting that does not
appear on the Settings dialog

All paths
Telnet/TTY paths
Connection Tool Variables 359

box but determines which paths
appear in the Path ID list box

The DevModel must match
the OpenID .

Unassociated paths
Unisys A/V Series Paths
Unisys 1100/2200 paths

DynamicPath Boolean If this variable is true, the user
must select a path from the
Select INFOConnect Path dialog
box. If it is false, the path
specified by PathID is used
automatically.

true, false

HostGraphics Integer The host graphics protocol to
use with the session

0=GraphX is not installed
1=GraphX for an 1100/2200 Series host
2=GraphX for an A Series host
3=GraphX for a UNIX host

OpenID String An internal setting that does not
appear on the Settings dialog
box but determines which paths
appear in the Path ID list box

To use this, UseOpenID must be
set to true , and OpenID must
match the DevModel .

ANSI (Telenet/TTY paths)
MT (Unisys A Series paths)
UTS60 (Unisys 1100/2200 paths)
"" (unassociated paths)

PathID String The INFOConnect path to use
for the session

Any valid INFOConnect path name

UseOpenID Boolean Determines whether the
connection tool lists only the
INFOConnect paths matching
those specified by the OpenID

true, false

Chapter 7 Connection, Terminal, and File Transfer Tools

InterCom Variables

InterCom supports the variables in DCAT27.PRE:

Variable Type Description Values

AlarmLevel Boolean Determines whether the PC
sounds a beep when the cursor
reaches a specified location

true, false
360 InterCom Variables

AlternateRS Integer Character to use for the record
separator field delimiter

1–255

AlternateUS Integer Character to use for the unit
separator field delimiter

1–255

AutoSizeFont Boolean Determines whether the font
size changes with the session
window size

true , false

ClrInForms String The data to clear when you
clear data in forms mode

Unprotected , All

ColumnAlarm Integer Column number at which the
alarm will sound (if enabled)

1–100

Columns Integer Number of columns per page 1–132

CR_Interp String The interpretation of a received
CR character

CR, CRLF

CurShape String Cursor shape Block , Underline , or
VerticalBar

CursorWrap Boolean Determines whether a word
wraps to the next line

true, false

DC1_Function String The interpretation of a received
DC1 character

LineClr , StayInRcv

DC2_Function String The interpretation of a received
DC2 character

ToggleForms , AdvanceDCP

DelimiterVisible Boolean Determines whether field
delimiters are displayed or
replaced by blanks

true , false

DispCRSym Boolean Determines whether a CR
entered from the keyboard is
displayed

true , false

DisplayETX Boolean Determines whether an ETX
received from the host is
displayed

true , false

Chapter 7 Connection, Terminal, and File Transfer Tools

DisplayRcvdCR Boolean Determines whether a CR
received from the host is
displayed

true , false

DisplayRcvdHT Boolean Determines whether an HT
received from the host is
displayed

true , false

DispTabSym Boolean Determines whether an HT true , false

Variable Type Description Values
InterCom Variables 361

entered from the keyboard is
displayed

ETX_Advance Boolean Determines whether the cursor
advances one position when
an ETX is received

true , false

FF_ClrsTabs Boolean Determines whether variable
tabs are cleared when a form
feed is received

true , false

Font String The name of the font to use InterComW N , InterComW
B, or a fixed-width typeface
name, such as Terminal or
Courier

FontSize Integer Point size of the font to use Varies with the font

FormXmitToCursor Boolean Determines whether only the
data up to the cursor be sent to
the host

true , false

HostScreenInvert Boolean Determines whether the Host
To Screen translation table will
be inverted

true , false

HostScreenTable String File name of the Host To
Screen translation table

filename

InsSpace Boolean Determines whether toggling
on insert mode inserts a space
at the cursor

true , false

KbdCROnly Boolean Determines whether the cursor
stays on the current row when
a CR is entered

true , false

LF_Interp String The interpretation of a received
line feed character

LF, CRLF

LineAtATimeXmit Boolean Determines whether the
transmit key sends only the line
containing the cursor

true , false

Chapter 7 Connection, Terminal, and File Transfer Tools

LowerCase Boolean Determines whether lower
case characters can be
entered from the keyboard

true , false

NoSkipField Boolean Determines whether the cursor
stays in the current field when
the field is full or goes to the
next field

true , false

Variable Type Description Values
362 InterCom Variables

Pages Integer Number of terminal pages 1–99

RawEightBit Boolean Determines whether extended
characters are sent to the host

true , false

RcvModeHold Boolean Determines whether the PC
remains in receive mode after
receiving a buffer

true , false

RowAlarm Integer Row number at which alarm
sounds (if enabled)

1–50

Rows Integer Number of rows per page 1–50

ScreenHostInvert Boolean Determines whether the
Screen to Host translation table
will be inverted

true , false

ScreenHostTable String File name of the Screen to Host
translation table

filename

ExtendedSOSI Boolean Determines whether to use SO
and SI to send extended
characters

true , false

TranslateSOSI Boolean Determines whether SO and SI
will be used to receive
extended characters

true , false

SOH_ClrsScreen Boolean Determines whether the start of
each buffer clears the screen

true , false

SOH_ExitsForms Boolean Determines whether the start of
each buffer exits forms mode

true , false

SpcfyKeyHex Boolean Determines whether the
Specify key sends the cursor
position in hexadecimal

true , false

SpcfySendsPage Boolean Determines whether the
Specify key sends the page
number as well as the cursor
position

true , false

Chapter 7 Connection, Terminal, and File Transfer Tools

SpecialScroll Boolean Determines whether received
data causes the display to
scroll

true , false

TabSize Integer The spacing between fixed tab
stops

1–100

TabStops String If variable tabs are used, a
string where a T represents

"T T T T"

Variable Type Description Values
InterCom Variables 363

each tab

TabType String How tab settings are specified Fixed , Variable

VT_PageAdvance Boolean Determines whether a received
VT causes a page advance

true , false

Chapter 7 Connection, Terminal, and File Transfer Tools

PEP Variables

PEP supports the following variables in AMUTS.PRE:

Variable Type Specifies Values

AltBrightness String The way the cursor should blink LowIntensity ,
Reverse ,
NormalIntensity
364 PEP Variables

AlwaysHomeCursor Boolean Determines whether the cursor is
placed at the home position even if
it is protected

true , false

AutoShiftLB Integer The lower boundary for changing
to uppercase or lowercase

1–255 , indicating the
character number

AutoShiftUB Integer The upper boundary for changing
to uppercase or lowercase

1–255 , indicating the
character number

BeepOnSysMessage Integer Number of beeps when the host
sends a message

0–99

BlinkEnabled Boolean Determines whether blink is
enabled when the host sends a
character with a blinking attribute

true , false

CPFlags : Integer Control page flags:

Display control characters
Destructive spaces
System response mode
Upper case shift
Keyboard click
Intensity of status line (UTS 20/40)
Ignore host color (UTS 60)
Sound screen alarm (UTS 60)
Repeat screen alarm (UTS 60)
Cursor return (UTS 60)
Sets all values to their defaults

Note : All apply to UTS 20/40/60
unless noted otherwise. For
example, intensity of status line
applies only to UTS 20/40.

To specify a combination of Control
Page flags, add the values in the
Value column. For example, to
both display control characters and
use a destructive space, set
CPFlags = 0x0003.

0x0001
0x0002
0x0004
0x0008
0x0010
0x0100
0x0200
0x1000
0x2000
0x4000
0x3312

Chapter 7 Connection, Terminal, and File Transfer Tools

CursorShape String Shape of the cursor block , underline ,
verticalbar

DefaultAppName String Name of host application specified
in Windows registry

application_name

DNPartialEnd Integer The end line of a partial file transfer
in a MAPPER download

line_number

DNPartialStart Integer The start line of a partial file line_number

Variable Type Specifies Values
PEP Variables 365

transfer in a MAPPER download

DNPCFileMode String The file mode for a MAPPER
download

append , overwrite ,
insert

DNPCFileType String The file type for a MAPPER
download

csv , textwithtabs ,
textnotabs

DNSilentMode Integer MAPPER downloads in silent
mode

1=silent mode
0=off

DNStripHeader Integer MAPPER downloads stripping the
header

1=strip header
0=off

DynamicSizing Boolean Determines whether the font size
changes with the session window
size

true , false

EmphasisTransmit String Type of emphasis to transmit emphxmit_none ,
emphxmit_e2 ,
emphxmit_e3

ExtendedCP Boolean Determines whether the extended
control page is enabled

true , false

FaceName String Font name UTSFONT, PEPFONT, or a
fixed-width typeface
name, such as Terminal
or Courier

FCCTransmit String Type of FCCs to transmit fccxmit_none ,
fccxmit_expanded ,
fccxmit_color

HostAutoLogon Boolean Determines whether automatic
logon occurs when the session is
started

true , false

HSTableName String Name of Host To Screen
translation table

filename

OverrideHostFCCs Boolean Determines whether host FCC
changes are overridden

true , false

Chapter 7 Connection, Terminal, and File Transfer Tools

Pages Integer Number of pages 1–9

PointSize Integer Size of the font Varies with the font

PrintArea String Specifies which data to print prange_soecursor ,
prange_fullpage ,
prange_selected

PrinterDID Integer Device identifier where the host
should send host-initiated print

A valid DID value
(hexadecimal)

Variable Type Specifies Values
366 PEP Variables

jobs

PrintMode String Controls the way data on the
screen is printed

print_form ,
print_prnt ,
print_xpar

ProtCPPageColor Integer Color of protected characters in the
control page

BgFg (hexadecimal)

ReadDID Integer Device identifier that will receive
data from a device such as a host
disk drive or tape system

A valid DID value

SaveHostCPChanges Boolean Determines whether to save any
Control Page settings sent by the
host

true , false

ScanBackOn
ProctectedFields

Boolean Determines whether the cursor
goes to the previous unprotected
character when you try to put
cursor on a protected field using
the arrow key

true , false

ScreenColor Integer Color of screen BgFg (hexadecimal)

SHTableName String Name of Screen To Host
translation table

filename

SplEOLProcessing Boolean Determines whether the PC scans
for an end-of-line or end-of-field
character

true , false

StatusLineColor Integer Color of status bar BgFg (hexadecimal)

TerminalType String The terminal type UTS20, UTS40, UTS60

TransmitMode String Controls how data is transmitted xmit_all , xmit_chan ,
xmit_var

UnprotCPPageColor Integer Color of unprotected characters in
the control page

BgFg (hexadecimal)

Chapter 7 Connection, Terminal, and File Transfer Tools

UPInsertLine String Indicates the line in the MAPPER
report where the insertion should
begin

line_number

UPMapperCommand Integer MAPPER command character character

UPMaxLines Integer The number of lines downloaded at
a time in a MAPPER upload

number

UPPartialEnd Integer The end line of a partial file transfer line_number

Variable Type Specifies Values
PEP Variables 367

in a MAPPER upload

UPPartialStart Integer The start line of a partial file
transfer in a MAPPER upload

line_number

UPPCFileMode String The action to take if data already
exists in the MAPPER report

append , overwrite ,
insert

UPPCFileType String The file type for a MAPPER upload csv , textwithtabs ,
textnotabs

UPSilentMode Integer MAPPER upload in silent mode 1=silent mode
0=off

WSCols Integer Number of columns per page 2–132

WSFCCs Integer Maximum number of FCCs per
page

number

WSRows Integer Number of rows per page 2–50

Error Messages A
369

In This Appendix This appendix includes the following headings:

Classes of Error Message . 370

Internal Errors . 371

Compiler Errors . 372

Input/Output Errors . 380

Mathematical and Range Errors . 383

State Errors . 384

Critical Errors . 385

Macro Execution Errors . 386

Compatibility Errors . 389

Upload/Download Errors . 390

Missing Information Errors . 391

Multiple Document Interface Errors . 392

Emulator or File Transfer Protocol Errors 393

DLL Errors . 394

Generic Module Errors . 395

File Transfer Errors . 396

Navigation Errors . 398

Appendix A Error Messages

Classes of Error Message

The tables on the following pages list the error messages that
might appear while you are compiling or running CASL macros,
as well as possible solutions to these problems.

The following table lists error message classes and a description of
each class. A class number precedes each error number.
370 Classes of Error Message

Class Description

10 Internal errors

12 Compiler errors

13 Input/output errors

14 Mathematical and range errors

15 State errors

16 Critical errors

17 Macro execution errors

18 Compatibility errors

19 Upload/download errors

21 Missing information errors

23 Multiple Document Interface errors

28 Emulator or file transfer protocol error

33 DLL errors

40 Generic module errors

45 File transfer errors

50 Navigation errors

Appendix A Error Messages

Internal Errors

Error Code Error Message Explanation

10-08 Internal error: Cannot
find a connection, file
transfer, or terminal
tool. All tools must be
installed to the frame

When you run Accessory Manager, it refers to the
GI32.INI file for a list of installed connection, terminal,
and file transfer protocols. There must be at least one
of each. This error can occur under the following
circumstances:
Internal Errors 371

directory before running
Accessory Manager.

■ No terminal emulator has been installed. Install a
terminal emulator (such as PEP or InterCom)
before running Accessory Manager.

■ The GI32.INI file has been moved or deleted. Put
a copy of the GI32.INI file in your Windows
directory, or reinstall Accessory Manager.

■ The GI32.INI file has been modified, and
Accessory Manager cannot read it. Delete the
GI32.INI file and reinstall Accessory Manager.

10-12 Internal error: Unknown
GI error.

An internal error has occurred. Contact Customer
Support.

10-49 Internal error: Bad row
number.

Your CASL macro has set an invalid row number. Edit
the macro to ensure that the row number is valid.

10-50 Internal error: Bad
column number.

Your CASL macro has set an invalid column number.
Edit the macro to ensure that the column number is
valid.

10-51 Internal error: Bad
length.

The length of data in your CASL macro is invalid. Edit
the macro to ensure that the data length is valid.

10-96 Unrecognized error code. An internal error has occurred. Contact Customer
Support.

Appendix A Error Messages

Compiler Errors

Error Code Error Message Explanation

12-001 Too few arguments to
<procedure/ function>
'<procedure/ function
name>'.

When calling a previously defined function or
procedure, you specified more arguments than you
originally defined. Check the definition of the
referenced procedure or function, and correct your
macro.
372 Compiler Errors

12-002 Too many arguments to
<procedure/ function>
'<procedure/ function
name>'.

When calling a previously defined function or
procedure, you did not specify all the arguments that
you originally defined. Check the definition of the
referenced procedure or function, and correct your
macro.

12-003 Array '<array name>' is
too large.

Arrays are limited to a size of 32 KB. The referenced
array exceeds that size. You can calculate the size of
an array by multiplying the size of the data elements
by the total number of elements in the array.
Redefine the size of your array.

12-004 Invalid left hand side
of assignment statement.

The operand on the left side of the assignment
statement is invalid and cannot be assigned a value.
This operand must be a variable. You cannot assign
a value to a procedure, function, or constant. Correct
the assignment statement and try again.

12-005 Bad combination of type
modifiers.

The modifiers of this declaration are mutually
exclusive. Modify the statement and try again.

12-006 No more cases allowed
after the default case.

The default case must be the last value in a case
statement. Check the structure of the case
statement.

12-007 This format of the
<statement name>
statement is not
supported in this
version.

The statement in the macro is not supported or is
incorrectly formatted. Refer to Chapter 6, “CASL
Language," for the correct syntax.

12-008 End of file was
encountered in a
comment.

The compiler reached the end of the source file while
processing a comment. Check to see if the end-of-
comment delimiter was accidentally deleted.

12-009 <language element> must
be a compile time
constant.

You must use a constant. You cannot use a variable.

Appendix A Error Messages

12-018 Duplicate declaration of
'<variable>'.

You have declared this variable twice. Only one
declaration is allowed.

12-019 Reference to undeclared
variable '<variable>'.

This variable has not been declared, and the
compiler was unable to determine its data type from
the context. Declare the variable in your macro.

12-020 Division by zero. In evaluating the expression in this statement, you
attempted to divide by zero. This is not allowed.

Error Code Error Message Explanation
Compiler Errors 373

Correct your macro and try again.

12-021 Unable to open file
'<bad file>'.

The compiler received an error when it tried to open
this file. Check that the file name is specified
correctly.

12-022 Error reading file '<bad
file>'.

The compiler encountered an error while trying to
read this file. Make sure the file exists and is not
damaged.

12-023 For loop needs
assignment.

You did not set the initial value of the loop control
variable in a for statement. Correct the for statement
in your macro.

12-024 '<procedure/ function
name>' was declared
forward as <procedure or
function>, not
<procedure or function>.

One of two things occurred:

■ You declared this procedure or function as a
procedure in the forward declaration, but defined it
as a function in the actual definition.

■ You declared this procedure or function as a
function in the forward declaration, but defined it
as a procedure in the actual definition.

Correct your macro so the forward declaration and
the definition match.

12-025 Too few parameters to
'<procedure/ function
name>' to match forward
declaration.

The definition of this procedure or function has fewer
parameters than its forward declaration. Make sure
the forward declaration and the actual definition
match exactly.

12-026 Too many parameters to
'<procedure/ function
name>' to match forward
declaration.

The definition of this procedure or function has more
parameters than its forward declaration. Make sure
the forward declaration and the actual definition
match exactly.

12-027 Unresolved forward
<procedure or function>
'<procedure/ function
name>'.

You made a forward declaration for this procedure or
function, but you never provided an actual definition
of it. Provide a definition for this procedure or function
in your macro.

Appendix A Error Messages

12-028 '<identifier>' is not a
function name.

You have used an identifier as a function, but it is not
a function. You must use a valid function name.

12-029 genlabels directive must
be on to use a computed
goto.

At some point in your macro, you specified
genlabels off . This directive must be on (its
default state) to use the goto statement in a macro.

12-030 '<identifier>' is not a You have used identifier as a label, but it is not a
label. You must use a valid label.

Error Code Error Message Explanation
374 Compiler Errors

label.

12-031 Input statement needs a
variable, not a
constant.

You must specify a variable rather than a constant for
the input statement. The input statement will
use this variable to process keyboard input.

12-032 Internal error:
<compiler module> line
<number>.

An internal error has occurred in the compiler.
Contact Customer Support and be prepared to
furnish a copy of the macro that caused the error
along with the exact information in this message.

12-033 Invalid time interval. You specified a time interval incorrectly. Check the
way you expressed the time.

12-034 Unresolved label:
'<identifier>'.

This label was never defined anywhere in your
macro. Add the label to the appropriate section of
your macro.

12-035 Lexical analysis error:
<specific error>.

This error occurred during the lexical analysis phase
of the compilation process. Check this section of your
macro for syntax errors.

12-036 List box contents must
be <string> or one-
dimensional <string>
array.

The variable that contains the list of items to be
included in a list box must be either a string of items
separated by commas or a one-dimensional array of
strings.

12-037 Compiler out of memory. The compiler ran out of memory while compiling your
macro. Close any unneeded applications and try
again.

12-038 Too many arguments to
Nextline.

Too many arguments were specified for the
nextline statement. Check the list of arguments
you are passing to this statement.

12-040 Second operand of mod
operator must be
positive.

The modulus function allows only positive numbers
for its second operand. Revise your statement to use
a positive number.

12-042 Cannot have more than
one OK or Cancel button.

A dialog box can have only one OK button and one
Cancel button. Revise your macro accordingly.

Appendix A Error Messages

12-043 Could not open module
file '<bad file>'.

Accessory Manager could not open the module file
you specified. Make sure that the file name is correct
and that the file resides in the proper location.

12-044 Parsing error: <specific
error>.

This error occurred during the syntactic analysis
phase of the compilation process. Check this section
of your macro for syntax errors.

12-045 Print format Accessory Manager does not support print format

Error Code Error Message Explanation
Compiler Errors 375

specification is not
supported in this
version.

specifications. Revise your macro to eliminate these
specifications.

12-046 '<identifier>' is not a
procedure name.

You have used an identifier as a procedure, but it is
not a procedure. You must use a valid procedure
name.

12-047 Exit can only be used
inside a procedure.

The compiler encountered an exit statement
outside of a procedure. Check the procedures and
functions in your macro and make sure that they
begin and end properly.

12-048 Return with value can
only be used inside a
function.

The compiler encountered a return with a value
outside of a function. Values can only be returned
from functions. Check the procedure and functions in
your macro begin and make sure that they begin and
end properly.

12-049 Exit cannot be used in a
function.

The exit statement cannot be used to leave a
function. It can only be used to leave procedures.
Use the return statement instead of the exit
statement in a function.

12-050 Return in a procedure
cannot return a value.

Procedures cannot return values. The return
statement is used to return a value inside a function.
Either redefine your procedure as a function, or
change the return statement in your procedure.

12-051 Bad use of '^' in string
constant.

The caret symbol followed by a control character
indicates an unprintable control character in a string
constant. The character following the caret is not a
valid control character. Check the character following
the caret in the string constant.

12-052 String constant too
long.

The maximum length of a constant is 256 characters.
Shorten your string to fit within this limit.

12-053 String subscript out of
range.

The subscript you specified to access a character in
this string is beyond the end of the string. Make sure
the subscript is within the bounds of the string.

Appendix A Error Messages

12-054 Too few subscripts to
<array name>.

You have not specified enough subscripts to
reference this array. You specified more dimensions
when you declared the array than you used when you
referenced it. Correct either the declaration or the
reference.

12-055 Too many subscripts to
<array name>.

You have specified too many subscripts to reference
this array. You specified fewer dimensions when you
declared the array than you used when you

Error Code Error Message Explanation
376 Compiler Errors

referenced it. Correct either the declaration or the
reference.

12-056 Syntax error at '<bad
token>'.

The compiler found an error in your macro near bad
token. Make sure that all language elements in this
section of your macro are specified properly.

12-057 Bad token: '<string>'. The compiler did not recognize a string in your
macro. Make sure that all language elements in
string, and in the instructions surrounding it, are
specified properly.

12-058 Track procedure cannot
take parameters.

The procedure you named to the track statement
cannot have any parameters. Make sure that both
the track statement and the procedure definition
are specified properly.

12-059 Track procedure cannot
be a function.

The procedure you named to the track statement
must be a procedure, not a function. Make sure that
both the track statement and the procedure
definition are specified properly.

12-060 Track procedure can only
be a label or user
procedure.

The procedure you named to the track statement
may only be a procedure or a label. Make sure that
both the track statement and the procedure
definition are specified properly.

12-061 Type error: Assume file
name must be a <string>
constant.

The file name you specified in the assume
statement must be a string constant, not a variable.
Make sure that the name is a string and a constant.

12-062 Type error: cannot
perform "<operator>" on
types <type 1> and <type
2>.

This operation cannot be performed on variables of
these types. Check the operation and make sure that
the operands are of compatible types.

12-063 Type error: case
selector cannot be <bad
type>.

The type specified in the message cannot be used for
the selector in a case statement. Use a different
type for the selector.

Appendix A Error Messages

12-064 Type error: cannot
convert <type 1> to
<type 2>.

The compiler cannot convert the values specified.
Check the operation and make sure that the
operands are of compatible types.

12-065 Type error: "<string>"
cannot be converted to
<type>.

The compile encountered an error when attempting
to convert this string into type. This conversion was
required by the usage of the string in your macro.
Make sure the value in this string is compatible with

Error Code Error Message Explanation
Compiler Errors 377

the data types required by this statement. Perhaps a
string is not required in this case and some other data
type could be used.

12-066 Type error: <language
element> must be <good
type>, not <bad type>.

You used an invalid type for language element. You
must use the type specified in good type.

12-067 Type error: <language
element> must be a
<type> variable.

You used an invalid type for language element. You
must use a variable of the type specified in type. A
constant is not allowed in this situation.

12-068 Type error: Parameter
<number> of '<procedure/
function name>' was
declared forward as
<good type>, not <bad
type>.

In the forward declaration of this procedure or
function, this parameter was declared to be of a
different type than in the actual definition. Make sure
the forward declaration and the actual definition
match exactly.

12-069 Type error: Return type
of '<function name>' was
declared forward as
<good type>, not <bad
type>.

In the forward declaration of this function, the return
value was declared to be of a different type than in
the actual definition. Make sure the forward
declaration and the actual definition match exactly.

12-070 Type error: colors must
be <integer> or specific
color names.

You must either use an integer expression or specific
color names, such as "red," to specify a color.

12-071 Type error: argument
<number> of <procedure
or function>
'<procedure/ function
name>' must be <good
type>, not <bad type>.

One of the arguments for this procedure or function is
of the wrong type. Check the definition of the
procedure or function and make sure that you are
calling it properly.

12-072 Type error: cannot
subscript <variable>.

This variable is not an array variable and cannot be
subscripted. Either declare the variable to be an
array, or use an existing array variable.

Appendix A Error Messages

12-073 Type error: subscript
'<number>' of '<array
name>' must be <good
type>, not <bad type>.

This subscript is of the wrong type. Make sure the
subscript is of the type specified in good type.

12-074 Type error: subscript
'<string name>' must be
<good type>, not <bad

This subscript is the wrong type. Make sure the
subscript is of type specified in good type.

Error Code Error Message Explanation
378 Compiler Errors

type>.

12-075 Type error: cannot
perform '<operator>' on
type <bad type>.

This operation cannot be performed on a variable of
bad type. Check the operation and make sure that
the operand's type is compatible with the operation.

12-076 Type error: <procedure>
must be a user
procedure>.

A user-defined procedure is required here. You
cannot use a CASL built-in procedure.

12-077 The number of buttons is
limited to four.

An alert box can have only four buttons. You have
tried to put too many buttons in your box. Limit the
number of buttons to four.

12-078 Statement or expression
is too complex.

This statement or expression is too complex for the
compiler to compile. Simplify the statement or
expression, or break it up into smaller parts.

12-079 Type error: cannot
assign <right-side type>
to <left-side type>.

The type of expression on the right side of the
assignment statement is not compatible with the
variable on the left side. Correct the assignment
statement to make the types agree.

12-080 Error writing file '<bad
file>'.

The compiler received an error from the file system
when it tried to write to the specified file. Possible
reasons for this error are as follows:

■ Your disk is full. Free up space on this disk or use
another disk.

■ You have too many files open in other applications.
Close any applications you are not using.

■ Your disk is bad. Check to make sure your disk is
not damaged.

■ A removable disk or a network disk is no longer
online. Make sure the disk you are trying to write to
is online.

Appendix A Error Messages

12-081 String constant must be
one line.

A string constant must be entirely on one line. It
cannot extend across multiple lines. Your string is too
long. Make sure the string has a closing quotation
mark.

12-082 Keyword '<bad-keyword>'
cannot be used here.

The referenced CASL keyword cannot be used in this
context. If you were not aware that this was a CASL
keyword, you can correct this problem by adding the
or my to the word. For example, you can use

Error Code Error Message Explanation
Compiler Errors 379

my_password rather than password.

12-255 Unrecognized keyword:
'<bad keyword>'.

The keyword is not known by the compiler. Revise
your macro to eliminate this keyword.

Appendix A Error Messages

Input/Output Errors

Error Code Error Message Explanation

13-05 The file number is
invalid or missing.

Make sure you specify a file number in the get ,
put , read , and write statements. You must
precede the number with the pound symbol (#).

13-06 The specified file
channel number is

The specified file channel number is already open.
You must first close the channel or use another one.
380 Input/Output Errors

already open. You must
first close the channel
or use another one.

13-07 The specified channel
number is not open.

You tried to manipulate a file using read , write ,
get , or put without first opening the file, or the file
was previously closed. Open the file before using
read , write , get , or put .

13-08 Accessory Manager cannot
read an output file.

You opened this file for output only and tried to issue
a read or get statement. Modify your macro and
try again.

13-09 Accessory Manager cannot
write to an input file.

You opened this file for input only and tried to write to
it using the write or put statements. Modify your
macro and try again.

13-10 Accessory Manager cannot
get/put a text file.

You opened the file for input or output. These are
read and written to sequentially using the read and
write statements. Use get and put for random
files.

13-11 Accessory Manager cannot
read from or write to a
random file.

You opened the file in random mode and tried to use
the read or write statements. Use get and put
for random files.

13-16 Window coordinates out
of range.

The coordinates you have specified for accessing a
window are not valid. The coordinates must access a
valid portion of the window or display.

13-18 The specified window is
not open.

You have specified a window that is not open. You
cannot perform operations on a window unless it is
open.

13-28 Attempt to send output
to the display failed.

An error occurred while Accessory Manager was
trying to write information to the screen. Try running
the macro again. If it still fails, exit Accessory
Manager and/or Windows and try again.

Appendix A Error Messages

13-29 A file copy failed. Accessory Manager was unable to copy a file. The
following are possible reasons for this error:

■ Your disk is full. Delete unneeded files and try
again.

■ You have too many files open in other applications.
Close the open files and try again.

■ Your disk is bad. Contact your system

Error Code Error Message Explanation
Input/Output Errors 381

administrator.

■ A removable disk or a network disk is no longer
online. Try again when the specified disk is online.

13-30 The script attempted a
seek in a sequential
file; you can use seek
only with random files.

The file was not opened properly for performing the
seek function. Open the file using the appropriate
mode.

13-31 Multiple windows in a
session are not
supported in this
version.

This feature is not currently supported. Revise your
macro to use other language elements.

13-32 An error has occurred in
attempting to create a
new window.

An error occurred with the new command in your
macro. If you are using this command to open an
existing session, be sure to specify the file name of
the existing session.

13-33 There is already a file
that has the name
selected.

You must use a unique name for each file. Change
the file name and try again.

13-48 File creation error. Accessory Manager was unable to create a file. Verify
that you have adequate space on your disk and that
you have write privileges.

13-64 You must use -k or -c
when using -p command
line parameter.

The -p command line parameter specifies which
INFOConnect path to use for a particular session.
You must first open a session using the -k or -c
command line parameters before you can specify a
path for the session.

Appendix A Error Messages

13-65 The caption specified is
too long. It will be
truncated.

The caption specified for the session window title bar
is greater than 128 characters. Accessory Manager
will truncate the caption unless you reduce its size.

13-66 Administration utility
file not found. See your
administrator for
further instructions.

If the file AMFULL.RCF is not in the Windows
directory, Accessory Manager cannot run. Copy this
file to the Windows directory, or reinstall Accessory
Manager.

Error Code Error Message Explanation
382 Input/Output Errors

Appendix A Error Messages

Mathematical and Range Errors

Error Code Error Message Explanation

14-03 Division by zero was
attempted.

You tried to divide by 0. Check your macro, and the
expression used for the divisor, to determine why the
divisor contained a value of 0.

14-05 The expression is not
valid for the variable.

You tried to assign a different variable type to this
variable. Be sure to use valid expressions for each
Mathematical and Range Errors 383

variable.

14-06 The value is outside the
permissible range.

You specified a range for the indexes in an array
variable. The index falls outside that range.

14-09 A string was truncated. Accessory Manager truncated a string because it
was too long. Strings can be up to 32 KB.

14-10 Invalid characters were
found in a numeric
string.

You tried to make an assignment to an integer value.
The expression contained alphabetic or non-numeric
characters. If you are using hexadecimal
representation, make sure the number ends in h.

14-11 The specified value is
outside the acceptable
range.

You specified a range for the indexes in an array
variable. The index falls outside that range. Increase
the size of the array. If you are using a variable for the
index, make sure that the variable contains a value
inside the defined array range.

14-18 An invalid string was
specified for the quote
function.

A string specified for the quote function cannot
contain both single and double quotation marks.
Make sure that both types of marks are not used in
the string you pass to the quote function.

Appendix A Error Messages

State Errors

Error Code Error Message Explanation

15-01 The specified command is
applicable only when you
are online.

You were running a macro meant to be used online,
and you were not connected to a host. You may want
to use the trap , error , and online functions in
the macro to determine if you are connected.

15-07 The specified session This function requires a session number as a
384 State Errors

does not currently
exist.

parameter. Make sure the session exists by using the
sessno function to get its session number.

15-08 Feature is not supported
by the current terminal.

Modify your macro to ensure that only valid functions
for the specified terminal type are executed.

Appendix A Error Messages

Critical Errors

Error Code Error Message Explanation

16-02 Drive is invalid or
unknown.

Specify a valid drive and try again.

16-03 Drive is not ready. Insert a disk or close the drive door.

16-07 A seek error has Accessory Manager could not find the specified data.
Critical Errors 385

occurred. Use the CHKDSK utility to make sure your disk has
not been corrupted.

16-11 A write fault has
occurred.

Accessory Manager could not find the specified data.
Use the CHKDSK utility to make sure your disk has
not been corrupted.

16-12 A read fault has
occurred.

Accessory Manager could not find the specified data.
Use the CHKDSK utility to make sure your disk has
not been corrupted.

Appendix A Error Messages

Macro Execution Errors

Error Code Error Message Explanation

17-01 The specified label
cannot be found.

Make sure the label you specified in the gosub or
goto statements has a corresponding label
statement where you want it to go. Labels are not
case-sensitive.

17-03 'gosub' statements are You can have only a certain number of gosub
386 Macro Execution Errors

nested too deep. statements without issuing a return. Refer to
Chapter 6, “CASL Language,” for the correct syntax.

17-05 A data type mismatch for
an external variable was
found.

You are referencing a variable declared in another
macro. Check the other macro for the appropriate
data type for that variable.

17-07 The script was canceled
by the user.

This is an informational message. You can run the
macro again.

17-08 A reference to an
unresolved external
variable was found.

This variable is declared as external in this macro. It
must be declared as public in a macro that calls this
macro using the do statement.

17-10 An unavailable module
variable was found.

The module in the assume statement is not yet
loaded. Use the device , terminal , or
protocol system variables to load a given tool.
The assume statement only makes these variables
and settings known to the compiler; it does not load
the tool to make it accessible to running macros.

17-12 A 'return' statement
without a corresponding
'gosub' statement was
found.

While executing the macro, a return statement
was encountered, but the macro is not in a gosub .
There may be a logic error in the macro. Examine the
logic of the macro carefully and revise it.

17-14 A script compilation
failed when 'chain',
'do', or 'compile'
statement was executed.

When a chain , do , or compile statement is
issued, Accessory Manager checks to see if the
macro needs compiling. If it does, Accessory
Manager recompiles it before it runs. This error
message appears when a macro is compiled in this
manner, but has an error and cannot continue. Use
the CASL Macro Editor to correct errors in the macro,
and try again.

17-15 A return value was
missing in the return
from a function.

You declared a function, but never used the
return statement to return a value. The value
must be the same data type you used when you
declared the function.

Appendix A Error Messages

17-16 Generic error. This error can occur when the PC is out of memory.
Close any unneeded applications, and try again.

17-17 An internal error
occurred. Delete the
.xwc file and recompile
the script.

The .XWC file has become corrupted. Delete the file
and recompile the macro.

17-18 An invalid count The count expression used in this statement is not

Error Code Error Message Explanation
Macro Execution Errors 387

expression was used. valid. Correct this portion of the statement.

17-19 A string expression is
too long.

Strings are limited to 32 KB in size. Change the logic
of your macro so that you do not create strings
exceeding this length.

17-20 There is not enough
global memory available.

Accessory Manager does not have enough memory
to perform the function. Try closing sessions,
QuickPads, and other windows that you are not
currently using.

17-21 A 'dialogbox' keyword
was used outside a
'dialogbox' statement.

The keywords which describe a dialog box can only
be used inside a dialogbox statement. Revise
your macro to eliminate this occurrence of the
keyword.

17-22 'dialogbox' statements
are nested. These
statements cannot be
nested.

Revise your macro to eliminate nested
dialogbox statements.

17-23 The dialog cannot be
displayed.

The dialog is too complex to be displayed. Simplify
the dialog box or break it into multiple dialog boxes.

17-24 No pushbutton was
specified for a dialog
box.

Every dialog box must have at least one button so
that the user can close the dialog box. Add at least
one button to your dialog box.

17-25 'watch' statements
cannot be nested.

Revise your macro so that a second watch
statement is not called while another watch is
active.

17-26 Too many track channels
are open.

Check your usage of the track statement and
reduce the number of channels being used at once.

17-27 A stack overflow has
occurred. Procedures or
functions are nested too
deep.

You have made too many nested calls to procedures
and functions. Revise your macro so that calls are
not nested as deeply.

Appendix A Error Messages

17-28 The specified QuickPad
file cannot be found.

Make sure that you have specified the correct drive,
directory, file name, and file extension for the
QuickPad. If you are trying to access the QuickPad
file from a network drive, make sure that you are still
connected to the network.

17-29 The specified QuickPad
file has not been
loaded.

You have referred to a QuickPad file that is not
loaded. Load the QuickPad file and then perform
other operations on it.

Error Code Error Message Explanation
388 Macro Execution Errors

17-30 Cannot compile script
because the compiler is
already compiling
another script.

You can compile only one macro at a time. Wait for
the first compilation to finish before starting another.

Appendix A Error Messages

Compatibility Errors

Error Code Error Message Explanation

18-01 One or more specified
modules are of an
incompatible version.

Your GI.DLL file is incompatible with Accessory
Manager. Reinstall Accessory Manager.

18-03 The .XWC file is bad. You must recompile the .XWS file.
Compatibility Errors 389

Recompile the .XWS file.

18-05 The specified feature is
not supported in this
version.

Modify your macro to ensure that only valid functions
for the specified terminal type are executed.

18-16 Invalid profile. A problem has been detected in your file. Create a
new file and try again.

18-17 Section not found in
profile.

A problem has been detected in your file. Create a
new file and try again.

18-19 Keyword not found in
profile.

A problem has been detected in your file. Create a
new file and try again.

18-20 Invalid keyword in
settings.

A problem has been detected in your file. Create a
new file and try again.

18-21 Invalid value in
settings

A problem has been detected in your file. Create a
new file and try again.

18-22 Profile section read
error.

A problem has been detected in your file. Create a
new file and try again.

Appendix A Error Messages

Upload/Download Errors

Error Code Error Message Explanation

19-01 An unexpected DOS error
has occurred.

An unexpected error occurred. Contact Customer
Support.

19-02 The specified file
cannot be found.

Verify that the specified drive, directory, and file name
are correct.
390 Upload/Download Errors

19-03 The specified path
cannot be found.

Verify that the specified drive and directory are
correct.

19-05 Access has been denied
to the specified file.

You do not have access privileges to the specified
file, or the file is write-protected. Make sure the
attributes for the file are not read-only and that the
disk is not write-protected.

19-13 An invalid file name was
specified.

The file name is not valid. Correct the file name and
try again.

19-14 Nonexistent file
specified.

The specified file name does not exist. Type a valid
file name and try again.

19-15 Nonexistent directory
specified.

The specified directory name does not exist. Type a
valid directory name and try again.

19-19 Diskette is write-
protected.

You cannot write to the specified disk. Use a different
disk, or obtain write privileges.

19-21 Disk full. The disk is full. Delete unneeded files from the disk
and try again.

19-22 Invalid filename. The specified file name is not valid. Type a valid file
name and try again.

19-23 Invalid directory name. The specified directory name is not valid. Type a valid
directory name and try again.

19-24 Cannot run application
specified.

The specified application cannot be run. Make sure
that the application name is specified properly or try
another application.

Appendix A Error Messages

Missing Information Errors

Error Code Error Message Explanation

21-01 The specified script
file cannot be found.
Check the name and make
sure the file is in the
ACCMGR directory.

Accessory Manager cannot find the specified macro
file. Check the name, make sure the file is in
Accessory Manager directory, and try again.
Missing Information Errors 391

21-09 There is no default file
name; 'filefind' must be
used to set up a default
file.

The first time that you call filefind you must specify a
legal file specification that can include drive
specifiers and directory names as well as wildcard
characters. Only on subsequent calls can you omit
the string to receive additional file names in the list.

21-10 The ADP file contains a
reference to an unknown
tool.

The session profile is using a connection type,
terminal type, or file transfer protocol that Accessory
Manager no longer recognizes. Open the session
and reconfigure it using valid tools, or edit the .ADP
file using a text editor.

Appendix A Error Messages

Multiple Document Interface Errors

Error Code Error Message Explanation

23-08 Unable to create an MDI
document window. Try
freeing some memory.

Before trying this operation again, close other open
applications.
392 Multiple Document Interface Errors

Appendix A Error Messages

Emulator or File Transfer Protocol Errors

Error Code Error Message Explanation

28-16 Invalid module or module
not found.

A connection, terminal type, or file transfer protocol
specified in your session profile cannot be found.
Make sure the tools have been installed. If this error
persists, re-create the session.
Emulator or File Transfer Protocol Errors 393

Appendix A Error Messages

DLL Errors

Error Code Error Message Explanation

33-01 DLL file could not be
found.

Accessory Manager could not find a required DLL
file. Verify that all the files are in Accessory Manager
directory.

33-02 Path for DLL was not
valid.

The directory specified for a required DLL file does
not exist. Verify that all the files are in Accessory
394 DLL Errors

Manager directory.

33-03 DLL file was invalid or
corrupt.

Reinstall Accessory Manager to overwrite the corrupt
DLL file.

33-04 Unable to use requested
DLL file.

Accessory Manager could not access a required DLL
file. Make sure that you have read privileges to
Accessory Manager directory and try again.

33-05 Unable to use requested
DLL function.

Accessory Manager could not access a required DLL
function. Make sure that you have read privileges to
Accessory Manager directory and try again.

33-06 Attempt to use a data
type that is not
supported.

Refer to Chapter 2, “Understanding the Basics of
CASL,” for information about the types of data
supported.

Appendix A Error Messages

Generic Module Errors

Error Code Error Message Explanation

40-16 Invalid module or module
not found.

You tried to open a session that uses a terminal type
that has not yet been installed or is not listed in the
GI32.INI file. Use a different session, or install the
desired terminal emulator, or modify the GI32.INI file
to indicate that the terminal emulator has been
installed.
Generic Module Errors 395

40-17 [No error message] No printer is currently associated with this session.
Click Print Screen from Accessory Manager File
menu and select a printer.

40-18 Could not locate and
load library.

Accessory Manager cannot find the error strings
.DLL (DCAAMERR.DLL). Reinstall Accessory
Manager and try again.

Appendix A Error Messages

File Transfer Errors

Error Code Error Message Explanation

45-01 General time-out. A general time-out has occurred. The host’s protocol
did not respond. Try increasing the timing specified
for your file transfer protocol.

45-02 Host not responding. The host is not responding. Accessory Manager tried
to transfer the file, but received no response from the
396 File Transfer Errors

host. Check the communications link and try the
transfer again.

45-04 Too many errors -
transfer canceled.

Accessory Manager automatically canceled the
transfer because the maximum number of errors was
reached. Try again. If the problem persists, change
the timing for the file transfer protocol or raise the
number of errors that are allowed.

45-06 Sequencing failure -
transfer canceled.

Accessory Manager canceled the transfer because
of a sequencing failure. The file transfer protocol
encountered an internal error. Try the transfer again.
If the problem persists, contact Customer Support.

45-07 Transfer canceled by
local operator.

The user canceled the file transfer. This is an
informational message only. You can transfer the file
again.

45-08 Transfer canceled by
host.

The host canceled the file transfer. Too many errors
may have occurred, or the host disk may be full.
Check the host disk or increase the maximum
number of errors allowed.

45-09 Protocol can't do
wildcard transfers.

You used a file transfer protocol that does not support
a wildcard transfer for the file name. Transfer a single
file at a time or use a protocol that allows wildcard
transfers.

45-11 Local disk full. The file transfer cannot take place or was canceled
because the local disk is full. Clear some space on
the specified disk drive or change drives.

45-12 Host disk full. The file transfer did not occur because the host disk
is full. Clear some space on the specified host drive
or change drives.

Appendix A Error Messages

45-16 Bad protocol selection. Accessory Manager does not support the file transfer
protocol you selected. Choose a supported protocol
and try again.

45-18 The server command is
not valid.

You issued a Kermit command that is not currently
supported. Revise your macro to remove this
command.

Error Code Error Message Explanation
File Transfer Errors 397

Appendix A Error Messages

Navigation Errors

Error Code Error Message Explanation

50-176 Error in navigation. An
attempt to follow a path
took us to an unknown
screen. Playback is
terminated.

While using the recorded navigation paths,
Accessory Manager got to an screen that it could not
identify. This can occur if the original recording
included data that does not always appear on the
host screen, or that has changed since the original
recording was made. You might have to delete or
398 Navigation Errors

truncate an identification field and try again. Refer to
the online Help for information on this procedure.

50-177 Error in navigation. An
attempt to follow a path
took us back to the same
screen. Playback is
terminated.

You recorded a procedure that invokes the same host
screen, or Accessory Manager cannot distinguish
between two very similar host screens. Re-record the
host screens and try again, or modify the
identification fields for the recorded screens and try
again.

50-178 Error in navigation. An
attempt to follow a path
took us to an unexpected
screen. Playback is
terminated.

While using the recorded navigation paths,
Accessory Manager went to a screen that could be
identified, but this was not the screen it expected to
arrive at as a result of following the navigation path.
Re-record the procedure to arrive at the desired host
screen and try again.

50-182 No path exists from the
current screen to the
destination screen.

You clicked the name of a recorded host screen on
the Bookmarks/Pages dialog box, but no navigation
path exists to get to that screen. Re-record the
procedure to get from the current screen to the
desired screen and try again.

Index
399

3270 sessions (see EXTRA! Office for
Accessory Manager)

5250 sessions (see EXTRA! Office for
Accessory Manager)

A
Abbreviations, used in this guide xx
abs function 117
activate statement 118
activatesession statement 119
Addition operator 47
alarm statement 120
ALC 2, 356
alert statement 88, 122
AMUTS.PRE 364
And operator 53
Append mode 264
Application start-up macro 30
arg function 124
Arguments, passing to other macros 90
Arithmetic expressions 46-49
Arithmetic operators

Addition 47
BitAnd 46, 47
BitNot 46, 47
BitOr 47
BitXor 46, 47
Division 46, 48

Arithmetic operators, continued
IntDivision 46, 48
Modulo 46, 48
Multiplication 46, 48
Negate 46, 48
Rol 46, 48
Ror 46, 48
Shl 46, 48
Shr 46, 48
Subtraction 47, 49

Array data type 36
Array declarations

multidimensional 68
multidimensional with alternative

bounds 69
single dimension 68
single dimension with alternative

bounds 69
asc function 125
ASCII control characters 39
assume statement 126

B
backups module variable 127
binary function 128
Binary integers 38
BitAnd operator 46, 47
BitNot operator 46, 47

Index

BitOr operator 47
bitstrip function 129
BitXor operator 46, 47
Blank lines, using 15
Block comments 33
Boolean data type 36
Boolean operators 53
Braces, using 32
busycursor statement 130
bye statement 131
Byte data type 36

Constants, continued
on 261
real 38
string 39
true 327

Conversions, type
asc function 125
binary function 128
bitstrip function 129
chr function 139
class function 141
400

C
capture statement 132-133
case...endcase statement 134
CASL Macro Editor 5
CASL overview 2
chain statement 90, 124, 136, 176
Char data type 36
chdir statement 137
Child macros 66, 90
choice system variable 122, 138
chr function 55, 139
cksum function 140, 149
class function 141
clear statement 142
close statement 143
cls statement (see clear statement)
Comments 7, 33-34

block 33
line 33-34
using 15

Compatibility errors 389
compile statement 145
Compiler directives 56-57

genlabels 205
genlines 206
include 222
scriptdesc 297
trap 326

Compiler errors 372-379
Compiling a macro 29
connected function (see online function)
Connection tools 126, 167, 355, 359
Constants 9, 37-43

boolean 43
false 191
integer 37

dehex function 161
detext function 166
enhex function 179
entext function 181
hex function 214
intval function 230
mkint function 247
mkstr function 248
octal function 259
str function 310
val function 332

copy statement 147
count function 148
crc function 149
Critical errors 385
curday function 150
curdir function 151
curdrive function 152
curhour function 153
curminute function 154
curmonth function 155
cursecond function 156
curyear function 157
Cyclical redundancy check 149

D
Data capture

capture statement 132-133
Data type conversion 54-55
Data types 36
date function 158
Date operations 97

curday function 150
curmonth function 155
curyear function 157
date function 158
weekday 341

Index

DCAT27.PRE 360
Decimal integers 37
Declarations 7

arrays 68
explicit 65
func...endfunc 203
functions 73
implicit 67
proc...endproc 276
procedures 70
public and external variables 66

Error control, continued
error function 188
trap compiler directive 326

error function 92, 188
trap compiler directive 186

Error messages 370-398
classes of error messages 370
compatibility errors 389
compiler errors 372-379
critical errors 385
DLL errors 394
401

scope rules for labels 76
scope rules for variables 75

Default keyword 134
definput system variable 159
defoutput system variable 160
dehex function 161
delete function 163
delete statement 162
description system variable 164
destore function 165
detext function 166
device system variable 167
dialogbox...enddialog statement 88, 168
Directives 8
display system variable 175
Display/device type 316
Division operator 46, 48
DLL errors 394
do statement 90, 124, 176
Double hyphens, line comments 33
drive statement 177

E
Emulator or file transfer protocol errors 393
end statement 178
enhex function 179
enstore function 180
entext function 181
environ function 182
eof function 183
eol function 184
Equality operator 51
errclass system variable 92, 186
errno system variable 92, 93, 187
Error control 98

errclass system variable 186
errno system variable 187

emulator or file transfer protocol
errors 393

file transfer errors 396-397
generic module errors 395
input/output errors 380-382
internal errors 371
macro execution errors 386-388
mathematical and range errors 383
missing information errors 391
multiple document interface errors 392
navigation errors 398
state errors 384
upload/download errors 390

Error trapping 56, 92
Executable files, macro 29
exists function 189
exit statement 190
Explicit variable declarations 65
Expressions 44-45

arithmetic 46-49
boolean 53
order of evaluation 45
overview 9
relational 51
string 50

External variables 66
EXTRA! Office for Accessory Manager 2

connection tools 355
terminal tools 356
unsupported commands 126, 131, 167,

279, 281, 301, 309, 316, 334, 338

F
false constant 191
File I/O operations 99

backups module variable 127
capture statement 132-133

Index

File I/O operations, continued
chdir statement 137
close statement 143
copy statement 147
curdir function 151
curdrive function 152
definput system variable 159
defoutput system variable 160
delete statement 162
drive statement 177
eof function 183

Function declarations
argument list 73
forward function declaration 74
general description 73
using the forward keyword 74

Functions
abs 117
arg 124
asc 125
binary 128
bitstrip 129
402

eol function 184
exists 189
filefind function 192
filesize function 194
fncheck function 195
fnstrip function 196
get statement 207
loc function 237
mkdir statement 246
open statement 264
put statement 280
read line 284
read statement 283
receive statement 285
rename statement 286
rmdir statement 293
seek statement 299
send statement 300
write line statement 349
write statement 348

File transfer errors 396-397
File transfer tool 279
File transfer tools 126, 357
filefind function 192
filesize function 194
fncheck function 195
fnstrip function 196
Focus option 172
footer system variable 198
for...next statement 199
Forward declarations

functions 74
procedures 71

freemem function 201
freetrack function 202
func...endfunc declaration 73, 203

chr 139
cksum 140
class 141
count 148
crc 149
curday 150
curdir 151
curdrive 152
curhour 153
curminute 154
curmonth 155
cursecond 156
curyear 157
date 158
declaring 73
dehex 161
delete 163
destore 165
detext 166
enhex 179
enstore 180
entext 181
environ 182
eof 183
eol 184
error 188
exists 189
external 74
filefind 192
filesize 194
fncheck 195
fnstrip 196
freemem 201
freetrack 202
hex 214
hms 218
inject 223

Index

Functions, continued
inkey 224
inscript 227
insert 228
instr 229
intval 230
left 234
length 235
loc 237
lowcase 238
max 241

Functions, continued
ypos 351

G
Generic module errors 395
genlabels compiler directive 56, 205
genlines compiler directive 56, 206
get statement 207
go statement 208
gosub...return statement 209
403

mid 243
min 244
mkint 247
mkstr 248
name 250
nextchar 253
nextline 256
null 258
octal 259
online 262
ontime 263
pack 265
pad 266
quote 282
right 292
secno 298
session 302
sessname 303
sessno 304
slice 308
str 310
strip 311
stroke 312
subst 313
systime 314
time 318
track 324
upcase 330
val 332
version 333
weekday 341
winchar 343
winsizex 344
winsizey 345
winstring 346
winversion 347
xpos 350

goto statement 205, 210
grab statement 211
GreaterOrEqual operator 51
GreaterThan operator 51

H
halt statement 212
header system variable 213
hex function 54, 214
Hexadecimal integers 37
hide statement 215
hideallquickpads statement (see

unloadallquickpads statement)
hidequickpad statement (see unloadquickpad

statement)
hms function 218
homedir system variable 219
Host interaction 84-86, 101

display system variable 175
match system variable 240
nextchar function 253
nextline function 256
nextline statement 254
online function 262
press statement 272
reply statement 288
sendbreak statement 301

Hyphens, double 33

I
ICSTOOL 355, 359
Identifiers 35
if...then...else statement 220
include compiler directive 57, 72, 74, 222
INFOConnect connection tool 355, 359
inject function 223
inkey function 224
Input mode 264

Index

input statement 88, 226
Input/output errors 380-382
inscript function 227
insert function 228
instr function 229
IntDivision operator 46, 48
Integer data type 36
Integers

binary 38
decimal 37
hexadecimal 37

M
Macro elements

constants 9
expressions 9
keywords 10
labels 9
procedures and functions 9
variables 9

Macro execution errors 386-388
Macro management 102
404

kilo 38
octal 38

InterCom, variables 360
Internal errors 371
intval function 54, 230

J
jump statement (see goto statement)

K
Keys

in string constants 42
numeric values 224

keys system variable 232
Keywords 10, 58-62
Kilo integers 38

L
label statement 233
Labels

overview 9
scope rules 76

Learn Mode 4
left function 234
length function 235
LessOrEqual operator 51
LessThan operator 51
Limitations 2
Line comments 33-34

using a semicolon 34
using double hyphens 33

Line continuation characters 32
loadquickpad statement 236
loc function 237
lowcase function 238
lprint statement 239

chain statement 136
compile statement 145
do statement 176
genlabels compiler directive 205
genlines compiler directive 206
include compiler directive 222
inscript function 227
quit statement 281
scriptdesc compiler directive 297
startup system variable 309
terminate statement 317
trace statement 320

Macros
calling another macro 90
chaining to another macro 90
comments 7
compiling 29
creating 4-5
declarations 7
designing 11
directives 8
elements of 9
exchanging variables with other

macros 91
file types 29
passing arguments to other macros 90
running 30
structure of 7
types of 6

match system variable 240
Mathematical and range errors 383
Mathematical operations 103

abs function 117
cksum function 140
crc function 149
intval function 230
max function 241
min function 244

Index

Mathematical operations, continued
mkint function 247
val function 332

max function 241
maximize statement 242
Messages, error 370-398
mid function 243
min function 244
minimize statement 245
Missing information errors 391
mkdir statement 246

P
pack function 265
pad function 266
Parent macros 66
passchar system variable 268
password system variable 269
PEP, variables 364
perform statement 72, 270, 277
pop statement 271
Predefined variables 64
405

mkint function 247
mkstr function 248
Module variables 64

backups 127
tabwidth 315

Modulo operator 46, 48
move statement 249
Multidimensional arrays 68
Multiple document interface errors 392
Multiple-variable declarations 65
Multiplication operator 46, 48

N
name function 250
Navigation errors 398
Negate operator 46, 48
netid system variable 251
new statement 252
nextchar function 253
nextline function 256
nextline statement 254
noask keyword 162
Not operator 53
null function 258

O
octal function 259
Octal integers 38
off constant 260
Offline macros 6
on constant 261
online function 262
Online macros 6
ontime function 263
open statement 264
Or operator 53
Output mode 264

press statement 272
print statement 87, 274
Printer control 104

capture statement 132-133
footer system variable 198
grab statement 211
header system variable 213
lprint statement 239
printer system variable 275

printer system variable 275
proc...endproc procedure declaration 70, 276
Procedure declarations 70
Procedures

argument list 70
declaring 70
external 72
forward declarations 71
overview 9

Program flow control 105
case...endcase statement 134
chain statement 136
do statement 176
end statement 178
exit statement 190
for...next statement 199
freetrack function 202
func...endfunc declaration 203
gosub...return statement 209
goto statement 210
halt statement 212
if...then...else statement 220
label statement 233
perform statement 270
proc...endproc declaration 276
quit statement 281
repeat...until statement 287
return statement 291
terminate statement 317

Index

Program flow control, continued
timeout system variable 319
trace statement 320
track function 324
track statement 321
wait statement 334
watch...endwatch statement 338
while...wend statement 342

protocol system variable 279
Protocol types 279
Public variables 66, 91

Scope rules, continued
local variables 75

script system variable 296
scriptdesc compiler directive 57, 297
secno function 298
Secret option 172
seek statement 299
Semicolon, line comments 34
send statement 300
sendbreak statement 301
Session
406

put statement 280

Q
quit statement 281
Quotation marks, embedded in string

constants 39
quote function 282

R
Random mode 264
read line statement 284
read statement 283
Real data type 36
receive statement 285
Relational expressions 51
rename statement 286
repeat...until statement 85, 287
reply statement 86, 288
request statement (see receive statement)
Reserved keywords 58-62
restore statement 290
return statement 209, 291
right function 292
rmdir statement 293
Rol operator 46, 48
Ror operator 46, 48
run statement 294

S
Sample macros

basic logon macro 12-15
controlling the logon process 23-28
verifying the host connection 16-22

save statement 295
Scope rules

global variables 75
labels 76

creating 252
opening 252
start-up macro 296

session function 302
Session management 107

activate statement 118
activatesession statement 119
assume statement 126
bye statement 131
description system variable 164
device system variable 167
go statement 208
keys system variable 232
name function 250
netid system variable 251
new statement 252
ontime function 263
password system variable 269
protocol system variable 279
quit statement 281
run statement 294
save statement 295
script system variable 296
session function 302
sessname function 303
sessno function 304
startup system variable 309
terminal system variable 316
terminate statement 317
userid system variable 331

Session start-up macro 30
sessname function 303
sessno function 304
Shl operator 46, 48
show statement 305
showquickpad statement (see loadquickpad

statement)

Index

Shr operator 46, 48
Single-dimensional arrays 68
Single-variable declarations 65
size statement 307
slice function 308
Some keyword 147
Source files, macro 29
Start-up macro, session 296
startup system variable 309
State errors 384
Statements 32

Statements, continued
new 252
nextline 254
open 264
perform 270
pop 271
press 272
print 274
put 280
quit 281
read 283
407

activate 118
activatesession 119
alarm 120
alert 122
assume 126
busycursor 130
bye 131
capture 132-133
case...endcase 134
chain 136
chdir 137
clear 142
close 143
compile 145
copy 147
delete 162
dialogbox...enddialog 168
do 176
drive 177
end 178
exit 190
for...next 199
get 207
go 208
gosub...return 209
goto 210
halt 212
hide 215
if...then...else 220
input 226
label 233
loadquickpad 236
lprint 239
maximize 242
minimize 245
mkdir 246
move 249

read line 284
receive 285
rename 286
repeat...until 287
reply 288
restore 290
return 291
rmdir 293
run 294
save 295
seek 299
send 300
sendbreak 301
show 305
size 307
terminate 317
trace 320
track 321
unloadallquickpads 328
unloadquickpad 329
wait 334
watch...endwatch 338
while...wend 342
write 348
write line 349
zoom 352

str function 54, 310
String constants 39

ASCII control characters 39
continuing on a new line 43
embedded quotation marks 39
key names 42

String data type 36
String expressions 50
String operations 109

arg function 124
bitstrip function 129

Index

String operations, continued
count function 148
dehex function 161
delete function 163
destore function 165
detext function 166
enhex function 179
enstore function 180
entext function 181
hex function 214
hms function 218

System variables, continued
netid 251
passchar 268
password 269
printer 275
protocol 279
script 296
startup 309
terminal 316
timeout 319
userid 331
408

inject function 223
insert function 228
instr function 229
intval function 230
left function 234
length function 235
lowcase function 238
mid function 243
mkstr function 248
null function 258
pack function 265
pad function 266
quote function 282
right function 292
slice function 308
str function 310
strip function 311
upcase 330
val function 332
winstring function 346

strip function 311
stroke function 312
subst function 313
Subtraction operator 49
System variables 64

choice 138
definput 159
defoutput 160
description 164
device 167
display 175
errclass 186
errno 187
footer 198
header 213
keys 232
match 240

systime function 314

T
Tabstop group option 172
Tabstop option 172
tabwidth module variable 315
Takes keyword 276
Terminal emulation types 316
terminal system variable 316
Terminal tools 126, 316, 356, 360, 364
terminate statement 317
time function 318
Time operations 97

curhour function 153
curminute function 154
cursecond function 156
hms function 218
secno function 298
time function 318

timeout system variable 86, 319, 334, 338
Tools 354

connection 126, 167, 355
file transfer 126, 279, 357
terminal 126, 316, 316, 356

trace statement 320
track function 324
track statement 202, 321
trap compiler directive 56, 92, 188, 326
true constant 327
Type conversion 54-55, 111

asc function 125
binary function 128
bitstrip function 129
chr function 139
class function 141
dehex function 161
detext function 166

Index

Type conversion, continued
enhex function 179
entext function 181
hex function 214
intval function 230
mkint function 247
mkstr function 248
octal function 259
str function 310
val function 332

Variables, continued
netid system variable 251
passchar system variable 268
password system variable 269
PEP 364
predefined 64
printer system variable 275
protocol system variable 279
public 66, 91
scope rules 75
script system variable 296
409

U
unloadallquickpads statement 328
unloadquickpad statement 329
upcase function 330
Upload/download errors 390
userid system variable 331

V
val function 332
Variable declarations

explicit 65
implicit 67
public and external 66

Variables 9
backups module variable 127
choice system variable 138
definput system variable 159
defoutput system variable 160
description system variable 164
device system variable 167
display system variable 175
errclass system variable 186
errno system variable 187
exchanging with other macros 91
external 66
footer system variable 198
global 75
header system variable 213
INFOConnect connection tool 359
initialization 66
initialization values 75
InterCom 360
keys system variable 232
local 75
match system variable 240
module 64
multiple-variable declarations 65

single-variable declarations 65
startup system variable 309
system 64
tabwidth module variable 315
terminal system variable 316
timeout system variable 319
userid system variable 331

version function 333
VT sessions (see EXTRA! Office for Accessory

Manager)

W
wait statement 84, 334
watch...endwatch statement 85, 338
weekday function 341
while...wend statement 85, 340, 342
winchar function 343
Window control 112

activate statement 118
alert statement 122
choice system variable 138
clear statement 142
dialogbox...enddialog statement 168
hide statement 215
input statement 226
loadquickpad statement 236
maximize statement 242
minimize statement 245
move statement 249
passchar system variable 268
print statement 274
restore statement 290
show statement 305
size statement 307
tabwidth module variable 315
unloadallquickpads statement 328
unloadquickpad statement 329

Index

Window control, continued
winchar function 343
winsizex function 344
winsizey function 345
winstring function 346
xpos function 350
ypos function 351
zoom statement 352

WinFTP, connection tools 355
winsizex function 344
winsizey function 345

write line statement 349
write statement 348

X
xpos function 350
XWC files 29
XWS files 29

Y
ypos function 351
410

winstring function 346
winversion function 347
Word data type 36

Z
zoom statement 352

We’d Like to Hear from You

After you have had a chance to use the documentation for this
product, please take a moment to give us your comments. Please
respond to the questions below, and return this form (or send
comments via Internet E-mail) to Attachmate at your
convenience. Thank you.

✔ What Attachmate product(s) are you using? (Please provide

version numbers also.)

✔ What type of documentation do you prefer?
____ Manual ____ Online Help

✔ Which chapters do you refer to most often in this manual?

✔ How often do you expect to refer to the manual?
____ Often ____ Occasionally ____ Never

✔ How is the level of detail in the manual?
____ Too little ____ Just right ____ Too much

✔ Does the documentation adequately explain how to install and
configure the product?
____ Yes ____ No

If not, what information is missing?

✔ How do you normally search for information in a manual?
____ Scan ____ Table of contents ____ Index

✔ Was there an index entry you looked for but couldn’t find?
____ Yes ____ No

If so, what was it? __

✔ How would you rate the manual overall, compared to manuals for
other products you’ve used?
____ Excellent ____ Good ____ Fair____Poor

What other product’s manuals do you particularly like?

✔ Did you find any errors in the manual?
____ Yes ____ No
If so, please list the page number, and describe the error:

✔ Any other comments about the manual?

Please tell us
about your
yourself (optional)

Name: __
Company name: ___
Your title/position:___
Years of PC experience: ______________________________________
Address: __
__
Country: _____________________ Phone:_______________________
E-mail address: ___

May we contact
you?

____ Yes ____ No

Send your
comments

Please send your comments in any of the following ways:

By Mail: Attachmate
Attn: Documentation Manager
8230 Montgomery Road
Cincinnati, OH 45236-2200
U.S.A.

By Fax: (513) 745-0327

By Internet E-mail: docs@attachmate.com

	Contents
	About This Guide
	Audience
	Documentation Conventions
	Abbreviations
	Related Documentation

	Introducing CASL
	About CASL
	Why Use Macros?
	Creating and Editing CASL Macros
	Creating a CASL�Macro

	Types of Macros
	The Structure of Macros
	Comments
	Declarations
	Directives

	The Elements of a Macro
	Statements
	Variables
	Constants
	Expressions
	Labels
	Procedures and Functions
	Keywords

	Designing a Macro
	Sample: A Basic Logon Macro
	Describing the Purpose of the Macro
	Documenting the Macro's History
	Displaying a Message
	Using String Constants
	Establishing Communications with MCI Mail
	Waiting for a Prompt from the Host
	Sending the Logon Sequence
	Using CASL Predeclared Variables
	Using Keywords
	Ending the Macro
	Using Comments and Blank Lines

	Sample: Verifying the Host Connection
	Declaring Variables
	Initializing Variables
	Performing a Task While a Condition is True
	Using a Relational Expression to Control the Proce...
	Waiting for a Character String
	Checking if a Timeout Occurred
	Testing the Outcome with a Boolean Expression
	Branching to a Different Macro Location
	Continuing the Logon if the Connection Is Establis...
	Incrementing a Counter Using an Arithmetic Express...
	Alerting the User if the Connection Failed
	Disconnecting the Session
	Using Indentation
	Using Braces with a Statement Group

	Sample: Controlling the Entire Logon Process
	Performing a Task while Multiple Conditions Are Tr...
	Watching for One of Several Host Responses
	Sounding an Alarm
	Using the Line- Continuation Sequence

	Compiling a CASL Macro
	Running a CASL Macro

	Understanding the Basics�of CASL
	Statements
	Line Continuation Characters

	Comments
	Block Comments
	Line Comments

	Identifiers
	Data Types
	Constants
	Integer Constants
	Real Constants
	String Constants
	Boolean Constants

	Expressions
	Order of Evaluation

	Arithmetic Expressions
	String Expressions
	String Concatenation Operation

	Relational Expressions
	Boolean Expressions
	Type Conversion
	Converting an Integer to a String
	Converting a String to an Integer
	Converting an Integer to a Hexadecimal String
	Converting an ASCII Value to a Character String

	Compiler Directives
	Suppressing Label Information
	Suppressing Line Number Information
	Trapping an Error
	Including an External File
	Defining a Macro Description

	Reserved Keywords

	Variables, Arrays, Procedures, and Functions
	Variables
	Predefined Variables
	User-Defined Variables

	Explicit Variable Declarations
	Single-Variable Declarations
	Multiple-Variable Declarations
	Initializers
	Public and External Variables

	Implicit Variable Declarations
	Arrays
	Single- Dimensional Arrays
	Multidimensional Arrays
	Arrays with Alternative Bounds

	Procedures
	Procedure Argument Lists
	Forward Declarations for Procedures
	External Procedures

	Functions
	Function Argument Lists
	Forward Declarations for Functions
	External Functions

	Scope Rules
	Local Variables
	Global Variables
	Default Variable Initialization Values
	Labels

	Calling DLL Functions
	Declaring DLL Functions
	Parameter and Return Values
	Non-Supported Parameters and Return Values
	Writing Windows DLLs

	Interacting with the Host, Users, and Other Macros...
	Interacting with the Host
	Waiting for a Character String
	Watching for Conditions to Occur
	Setting and Testing Time Limits
	Sending a Reply to�the Host

	Communicating with a User
	Displaying Information
	Requesting Information

	Invoking Other Macros
	Chaining to Another Macro
	Calling Another Macro
	Passing Arguments

	Exchanging Variables
	Trapping and Handling Errors
	Enabling Error Trapping
	Testing if an Error Occurred
	Checking the Type of Error
	Checking the Error Number

	Functional Purpose of CASL�Elements
	Overview
	Date and Time Operations
	Error Control
	File Input/Output Operations
	Host Interaction
	Macro Management
	Mathematical Operations
	Printer Control
	Program Flow Control
	Session Management
	String Operations
	Type Conversion Operations
	Window Control
	Miscellaneous Elements

	CASL Language
	How CASL Elements Are Documented
	abs (function)
	activate (statement)
	activatesession (statement)
	alarm (statement)
	alert (statement)
	arg (function)
	asc (function)
	assume (statement)
	backups (module variable)
	binary (function)
	bitstrip (function)
	busycursor (statement)
	bye (statement)
	capture (statement)
	case...endcase (statments)
	chain (statement)
	chdir (statement)
	choice (system variable)
	chr (function)
	cksum (function)
	class (function)
	clear (statement)
	close (statement)
	cls (statement)
	compile (statement)
	connected (function)
	copy (statement)
	count (function)
	crc (function)
	curday (function)
	curdir (function)
	curdrive (function)
	curhour (function)
	curminute (function)
	curmonth (function)
	cursecond (function)
	curyear (function)
	date (function)
	definput (system variable)
	defoutput (system variable)
	dehex (function)
	delete (statement)
	delete (function)
	description (system variable)
	destore (function)
	detext (function)
	device (system variable)
	dialogbox...enddialog (statements)
	display (system variable)
	do (statement)
	drive (statement)
	end (statement)
	enhex (function)
	enstore (function)
	entext (function)
	environ (function)
	eof (function)
	eol (function)
	errclass (system variable)
	errno (system variable)
	error (function)
	exists (function)
	exit (statement)
	false (constant)
	filefind (function)
	filesize (function)
	fncheck (function)
	fnstrip (function)
	footer (system variable)
	for...next (statements)
	freemem (function)
	freetrack (function)
	func...endfunc (function declaration)
	genlabels (compiler directive)
	genlines (compiler directive)
	get (statement)
	go (statement)
	gosub...return (statements)
	goto (statement)
	grab (statement)
	halt (statement)
	header (system variable)
	hex (function)
	hide (statement)
	hideallquickpads (statement)
	hidequickpad (statement)
	hms (function)
	homedir (system variable)
	if...then...else (statements)
	include (compiler directive)
	inject (function)
	inkey (function)
	input (statement)
	inscript (function)
	insert (function)
	instr (function)
	intval (function)
	jump (statement)
	keys (system variable)
	label (statement)
	left (function)
	length (function)
	loadquickpad (statement)
	loc (function)
	lowcase (function)
	lprint (statement)
	match (system variable)
	max (function)
	maximize (statement)
	mid (function)
	min (function)
	minimize (statement)
	mkdir (statement)
	mkint (function)
	mkstr (function)
	move (statement)
	name (function)
	netid (system variable)
	new (statement)
	nextchar (function)
	nextline (statement)
	nextline (function)
	null (function)
	octal (function)
	off (constant)
	on (constant)
	online (function)
	ontime (function)
	open (statement)
	pack (function)
	pad (function)
	passchar (system variable)
	password (system variable)
	perform (statement)
	pop (statement)
	press (statement)
	print (statement)
	printer (system variable)
	proc...endproc (procedure declaration)
	protocol (system variable)
	put (statement)
	quit (statement)
	quote (function)
	read (statement)
	read line (statement)
	receive (statement)
	rename (statement)
	repeat...until (statements)
	reply (statement)
	request (statement)
	restore (statement)
	return (statement)
	right (function)
	rmdir (statement)
	run (statement)
	save (statement)
	script (system variable)
	scriptdesc (compiler directive)
	secno (function)
	seek (statement)
	send (statement)
	sendbreak (statement)
	session (function)
	sessname (function)
	sessno (function)
	show (statement)
	showquickpad (statement)
	size (statement)
	slice (function)
	startup (system variable)
	str (function)
	strip (function)
	stroke (function)
	subst (function)
	systime (function)
	tabwidth (module variable)
	terminal (system variable)
	terminate (statement)
	time (function)
	timeout (system variable)
	trace (statement)
	track (statement)
	track (function)
	trap (compiler directive)
	true (constant)
	unloadallquickpads (statement)
	unloadquickpad (statement)
	upcase (function)
	userid (system variable)
	val (function)
	version (function)
	wait (statement)
	watch...endwatch (statements)
	weekday (function)
	while...wend (statements)
	winchar (function)
	winsizex (function)
	winsizey (function)
	winstring (function)
	winversion (function)
	write (statement)
	write line (statement)
	xpos (function)
	ypos (function)
	zoom (statement)

	Connection, Terminal, and File Transfer Tools
	The Tool Concept
	Connection Tools
	Terminal Tools
	File Transfer Tools
	Using Tool Variables
	Connection Tool Variables
	InterCom Variables
	PEP Variables

	Error Messages
	Classes of Error Message
	Internal Errors
	Compiler Errors
	Input/Output Errors
	Mathematical and Range Errors
	State Errors
	Critical Errors
	Macro Execution Errors
	Compatibility Errors
	Upload/Download Errors
	Missing Information Errors
	Multiple Document Interface Errors
	Emulator or File Transfer Protocol Errors
	DLL Errors
	Generic Module Errors
	File Transfer Errors
	Navigation Errors

	Index
	We’d Like to Hear from You

